A study of ammonia combustion induced by high reactivity fuel based on optical diagnostics and chemical kinetic analyses

被引:1
|
作者
Wen, Mingsheng [1 ,2 ]
Liu, Haifeng [1 ]
Zhang, Shouzhen [1 ]
Yue, Zongyu [1 ]
Cui, Yanqing [2 ,3 ]
Ming, Zhenyang [1 ]
Feng, Lei [4 ]
Yao, Mingfa [1 ]
机构
[1] Tianjin Univ, State Key Lab Engines, Tianjin 300072, Peoples R China
[2] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Kowloon, Hong Kong, Peoples R China
[4] China Elect Technol Grp Corp, Res Inst 53, Tianjin 300308, Peoples R China
基金
中国国家自然科学基金;
关键词
Ammonia; High reactivity fuel; Dual fuel approach; Optical diagnostics; Chemical kinetics; LAMINAR BURNING VELOCITY; N-HEPTANE; PERFORMANCE-CHARACTERISTICS; EMISSION CHARACTERISTICS; FLAME DEVELOPMENT; DIRECT-INJECTION; IGNITION; HYDROGEN; ENGINE; AUTOIGNITION;
D O I
10.1016/j.combustflame.2024.113896
中图分类号
O414.1 [热力学];
学科分类号
摘要
Ammonia is considered an optimal alternative fuel due to its non-emission of CO2. However, the use of pure ammonia presents significant challenges. A dual fuel approach utilizing ammonia and high reactivity fuel (HRF) is expected to address these challenges. Nevertheless, the interaction mechanism between ammonia and HRF remains unclear. In the current study, various direct injection (DI) fuels such as n-heptane, n-dodecane, and ndodecane mixed with 3%vol 2-ethylhexyl nitrate (EHN) were selected. Optical diagnostic methods and kinetic analyses were employed to investigate the effects of DI fuel reactivity and DI energy ratio on the dual fuel method adopting HRF and ammonia. Experimental results reveal that DI fuel reactivity and DI energy ratio determine the ability to ignite ammonia and influence flame development mode, respectively. Notably, the n-dodecane/EHN blend can operate at a 4% DI energy ratio, with a flame speed of less than 5 m/s, while at a 40% DI energy ratio, the flame speed increases to 10-15 m/s. Emissions at the 40% DI energy ratio include 4373 ppm of NO, 41.4 ppm of N2O, 71.2 ppm of NO2, and 6391 ppm of unburned NH3. Reducing the DI energy ratio from 40% to 20% decreases NO and NO2 emissions by 14.6% and 7.3%, respectively, while N2O and unburned NH3 emissions increase by 129.7% and 105%, respectively. Chemical kinetic analyses suggest that the active atmosphere produced by HRF has a certain impact on reducing ammonia ignition delay in the initial phase of combustion. As combustion progresses, the impacts of the HRF-induced thermal atmosphere on reducing the ammonia ignition delay become more pronounced, with ambient temperature playing a critical role. Furthermore, as the combustion process develops, the influence of ambient pressure on reducing ammonia ignition delay becomes increasingly significant.
引用
收藏
页数:13
相关论文
共 43 条
  • [31] Performance and emission analysis of ammonia-ethanol and ammonia-methane dual-fuel combustion in a spark-ignition engine: An optical study
    Uddeen, Kalim
    Tang, Qinglong
    Shi, Hao
    Turner, James
    FUEL, 2024, 358
  • [32] Experimental investigation on reactivity-controlled compression ignition (RCCI) combustion characteristic of n-heptane/ammonia based on an optical engine
    Zhang, Ren
    Chen, Lin
    Wei, Haiqiao
    Li, Jinguang
    Ding, Yi
    Chen, Rui
    Pan, Jiaying
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2023, 24 (06) : 2478 - 2488
  • [33] Ammonia-PODE dual-fuel direct-injection spray combustion: An optical study of spray interaction, ignition and flame development
    Wu, Haoqing
    Qian, Yong
    Mi, Shijie
    Zhang, Tianhao
    Lu, Xingcai
    JOURNAL OF CLEANER PRODUCTION, 2025, 487
  • [34] Experimental study on the evaporation and combustion characteristics of double Al/n-heptane based nanofluid fuel droplets in high temperature environment
    Zhu, Baozhong
    Chen, Weiqi
    Sun, Yunlan
    Guo, Peng
    Liu, Jianzhong
    THERMOCHIMICA ACTA, 2021, 705
  • [35] Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling
    Kokjohn, Sage L.
    Musculus, Mark P. B.
    Reitz, Rolf D.
    COMBUSTION AND FLAME, 2015, 162 (06) : 2729 - 2742
  • [36] Experimental and chemical kinetic study on effects of H2-DME fusion addition on laminar premixed flame speed and flame instability for ammonia composite combustion
    Yu, Changyou
    Guo, Liang
    Sun, Wanchen
    Zhang, Hao
    Cheng, Peng
    Yan, Yuying
    Zhu, Genan
    Jiang, Mengqi
    Guo, Yanan
    Yue, Fei
    ENERGY, 2024, 310
  • [37] Chemical kinetic and behavior study of the cracked gas of H2/N2 and DME addition on ammonia combustion in lean-burn condition
    Meng, Xiangyu
    Liu, Lizi
    Zhang, Mingkun
    Zhang, Xuanrui
    Long, Wuqiang
    Bi, Mingshu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 : 997 - 1008
  • [38] Comparison and optimization of strategies for ammonia-diesel dual-fuel engine based on reactivity assisted jet ignition and reactivity turbulent jet disturbance under high load conditions
    Wu, Binyang
    Shi, Minshuo
    Jin, Shouying
    Wang, Jiayong
    Zi, Zhenyuan
    Yang, Puze
    Ma, Qingyang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 67 : 487 - 499
  • [39] Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model
    Shu, Jun
    Fu, Jianqin
    Liu, Jingping
    Ma, Yinjie
    Wang, Shuqian
    Deng, Banglin
    Zeng, Dongjian
    APPLIED ENERGY, 2019, 233 : 182 - 195
  • [40] Numerical Study on Chemical Kinetic Characteristics of Counterflow Diffusion Flame Extinction of Methane/Ammonia/Air Flame under High Pressure or Air Preheating Temperature
    Chen, Ying
    Wang, Jingfu
    Zhang, Jian
    Li, Yi
    MOLECULES, 2024, 29 (15):