Investigation of the hydrogen-enriched methane combustion in a domestic boiler with porous burner on emissions and performance

被引:0
|
作者
Coskun, Gokhan [1 ]
Yalcinkaya, Orhan [1 ]
Parlak, Zekeriya [1 ]
Tur, Volkan [2 ]
Pehlivan, Huseyin [1 ]
Buyukkaya, Ekrem [1 ]
机构
[1] Sakarya Univ, Dept Mech Engn, Sakarya, Turkiye
[2] Daikin R&D Dept, Hendek, Sakarya, Turkiye
关键词
Hydrogen-enriched combustion; Domestic boiler; Porous burner; Porous media approach; CFD; FLOW; ENGINE; GAS;
D O I
10.1016/j.fuel.2024.134051
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Hydrogen is considered one of the most promising renewable fuel alternatives for decarbonizing the gas sector. The transition from fossil fuels to carbon-free alternatives is essential for achieving full carbon neutrality. Rather than a direct shift from natural gas systems to pure hydrogen, a gradual integration of hydrogen into the existing natural gas supply offers a more feasible transition pathway. In this study, the effects of utilizing a 20 % hydrogen-enriched methane mixture in a condensing boiler with a porous burner, commonly used for heating in residential and commercial applications, were investigated. Emission values for NOx, O2, CO2, and CO were obtained from experimental studies conducted at two different fan speeds. The experimental results revealed that the condensing boiler, originally designed to operate on 100 % methane, exhibited an approximate 5 % reduction in thermal power when operated with a fuel mixture of 20 % hydrogen and 80 % methane. Notably, a reduction in flue gas emissions was observed. At maximum thermal power, CO2 concentrations in the flue gas decreased from 9.3 % to 8.3 %, CO levels dropped from 71 ppm to 42 ppm, and NOx emissions reduced from 19 mg/kWh to 12 mg/kWh. Additionally, three-dimensional CFD simulations were conducted by using the AramcoMech 2.0 mechanism, which includes 25 species and 105 reactions, to further analyze the boiler's performance. A numerical comparison was conducted between the 100 % methane and the 20 % hydrogen-enriched methane fuel inputs. The porous burner was modeled using a porous media approach within the numerical framework. The numerical results were validated against experimental data, confirming the reliability of the simulations. These findings underscore the potential of hydrogen-enriched methane as a viable and environmentally friendly alternative fuel for condensing boilers equipped with porous burners.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Numerical investigation on lean methane combustion with modified effective thermal conductivity of the porous media
    Zhang, Guiyun
    Li, Qingzhao
    Liu, Xinxin
    Lin, Baiquan
    Li, Xiaowen
    COMBUSTION THEORY AND MODELLING, 2022, 26 (02) : 365 - 382
  • [22] Experimental study on combustion stability and performance of hydrogen-enriched compressed natural gas of a free-piston linear generator
    Ismael, Mhadi A.
    Aziz, A. Rashid A.
    Mohammed, Salah E.
    Zainal, A. Ezrann Z.
    Baharom, Masri B.
    Raheem, Ahmed T.
    Ayandotun, Wasiu B.
    Harith, Farith Ikmal
    Khazaimah, Intan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (79) : 39536 - 39547
  • [23] Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner
    Chen, Danan
    Li, Jun
    Li, Xing
    Deng, Lisheng
    He, Zhaohong
    Huang, Hongyu
    Kobayashi, Noriyuki
    ENERGY, 2023, 263
  • [24] Comparison of the flame stabilities during oxy-methane and air-methane combustion in a two-layer porous burner
    Liao, Mingjian
    He, Zhu
    Jia, Shuyuan
    Liang, Xiong
    Chan, Tat Leung
    Li, Yawei
    Xu, Xuecheng
    Liu, Ting
    CASE STUDIES IN THERMAL ENGINEERING, 2023, 51
  • [25] Combustion performance of a domestic cooker burner at different design parameters and fuels
    Yangaz, Murat Umut
    Coskun, Gokhan
    Yilmaz, Mustafa
    Soyhan, Hakan Serhad
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 409 - 423
  • [26] Assessing the role of turbulence-radiation interactions in hydrogen-enriched oxy-methane flames
    Krishnamoorthy, Gautham
    Rahman, Md Ashiqur
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (11) : 5722 - 5736
  • [27] Unsteady ultra-lean combustion of methane and biogas in a porous burner - An experimental study
    Habib, Rabeeah
    Yadollahi, Bijan
    Saeed, Ali
    Doranehgard, Mohammad Hossein
    Li, Larry K. B.
    Karimi, Nader
    APPLIED THERMAL ENGINEERING, 2021, 182
  • [28] SFGP 2007 - Natural Gas/Hydrogen mixture combustion in a porous radiant burner
    Gauthier, Segolene
    Lebas, Etienne
    Baillis, Dominique
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2007, 5
  • [29] SFGP 2007 - Natural gas/hydrogen mixture combustion in a porous radiant burner
    IFP
    不详
    Int. J. Chem. Reactor Eng., 2007,
  • [30] Numerical Investigation on the Effect of Burner Inclination Angle on Methane-Air Combustion in Multi-Regime Burner
    Hikkimath, Ganamatayya Kallayya
    Patel, Devendra Kumar
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2024, 42 (06) : 2193 - 2206