Semantic-aware representations for unsupervised Camouflaged Object Detection

被引:0
|
作者
Lu, Zelin [1 ]
Zhao, Xing [1 ]
Xie, Liang [1 ]
Liang, Haoran [1 ]
Liang, Ronghua [1 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci & Technol, 288 Liuhe Rd, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantic-aware segmentation; Unsupervised object detection; Camouflaged Object Detection; NETWORK; NET;
D O I
10.1016/j.jvcir.2024.104366
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unsupervised image segmentation algorithms face challenges due to the lack of human annotations. They typically employ representations derived from self-supervised models to generate pseudo-labels for supervising model training. Using this strategy, the model's performance largely depends on the quality of the generated pseudo-labels. In this study, we design an unsupervised framework to perform COD (Camouflaged Object Detection) without the need for generating pseudo-labels. Specifically, we utilize semantic-aware representations, trained in a self-supervised manner on large-scale unlabeled datasets, to guide the training process. These representations not only capturing rich contextual semantic information but also assist in refining the blurred boundaries of camouflaged objects. Furthermore, we design a framework that integrates these semantic- aware representations with task-specific features, enabling the model to perform the UCOD (Unsupervised Camouflaged Object Detection) task with enhanced contextual understanding. Moreover, we introduce an innovative multi-scale token loss function, which maintain the structural integrity of objects at various scales in the model's predictions through mutual supervision between different features and scales. Extensive experimental validation demonstrates that our model significantly enhances the performance of UCOD, closely approaching the capabilities of state-of-the-art weakly-supervised COD models.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Bilateral decoupling complementarity learning network for camouflaged object detection
    Zhao, Rui
    Li, Yuetong
    Zhang, Qing
    Zhao, Xinyi
    KNOWLEDGE-BASED SYSTEMS, 2025, 314
  • [42] GLCONet: Learning Multisource Perception Representation for Camouflaged Object Detection
    Sun, Yanguang
    Xuan, Hanyu
    Yang, Jian
    Luo, Lei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [43] Frequency-Spatial Entanglement Learning for Camouflaged Object Detection
    Sun, Yanguang
    Xu, Chunyan
    Yang, Jian
    Xuan, Hanyu
    Luo, Lei
    COMPUTER VISION - ECCV 2024, PT VI, 2025, 15064 : 343 - 360
  • [44] Frequency-Guided Spatial Adaptation for Camouflaged Object Detection
    Zhang, Shizhou
    Kong, Dexuan
    Xing, Yinghui
    Lu, Yue
    Ran, Lingyan
    Liang, Guoqiang
    Wang, Hexu
    Zhang, Yanning
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 72 - 83
  • [45] A survey on deep learning-based camouflaged object detection
    Zhong, Junmin
    Wang, Anzhi
    Ren, Chunhong
    Wu, Jintao
    MULTIMEDIA SYSTEMS, 2024, 30 (05)
  • [46] Key Object Detection: Unifying Salient and Camouflaged Object Detection Into One Task
    Yin, Pengyu
    Fu, Keren
    Zhao, Qijun
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XII, 2025, 15042 : 536 - 550
  • [47] Frequency Perception Network for Camouflaged Object Detection
    Cong, Runmin
    Sun, Mengyao
    Zhang, Sanyi
    Zhou, Xiaofei
    Zhang, Wei
    Zhao, Yao
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 1179 - 1189
  • [48] Predictive Uncertainty Estimation for Camouflaged Object Detection
    Zhang, Yi
    Zhang, Jing
    Hamidouche, Wassim
    Deforges, Olivier
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 3580 - 3591
  • [49] Toward Deeper Understanding of Camouflaged Object Detection
    Lv, Yunqiu
    Zhang, Jing
    Dai, Yuchao
    Li, Aixuan
    Barnes, Nick
    Fan, Deng-Ping
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (07) : 3462 - 3476
  • [50] Search and recovery network for camouflaged object detection
    Liu, Guangrui
    Wu, Wei
    IMAGE AND VISION COMPUTING, 2024, 151