Prompt-supervised dynamic attention graph convolutional network for skeleton-based action recognition

被引:0
作者
Zhu, Shasha [1 ]
Sun, Lu [1 ]
Ma, Zeyuan [1 ]
Li, Chenxi [1 ]
He, Dongzhi [1 ]
机构
[1] Beijing Univ Technol, Coll Comp Sci, Beijing, Peoples R China
关键词
Skeleton-based action recognition; Graph convolutional network; Attention mechanism; Dynamic convolution; Prompt learning;
D O I
10.1016/j.neucom.2024.128623
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Skeleton-based action recognition is a core task in the field of video understanding. Skeleton sequences are characterized by high information density, low redundancy, and clear structural information, thereby facilitating the analysis of complex relationships among human behaviors more readily than other modalities. Although existing studies have encoded skeleton data and achieved positive outcomes, they have often overlooked the precise high-level semantic information inherent in the action descriptions. To address this issue, this paper proposes a prompt-supervised dynamic attention graph convolutional network (PDA-GCN). Specifically, the PDA-GCN incorporates a prompt supervision (PS) module that leverages a pre-trained large-scale language model (LLM) as a knowledge engine and retains the generated text features as prompts to provide additional supervision during model training, enhancing the model's ability to discern analogous actions with negligible computational cost. In addition, for the purpose of bolstering the learning of discriminative features, a dynamic attention graph convolution (DA-GC) module is presented. This module utilizes self-attention mechanism to adaptively infer intrinsic relationships between joints and integrates dynamic convolution to strengthen the emphasis on local information. This dual focus on both global context and local details further amplifies the efficiency and effectiveness of the model. Extensive experiments, conducted on the widely-used skeleton-based action recognition datasets NTU RGB+D 60 and NTU RGB+D 120, demonstrate that the PDA-GCN surpasses known state-of-the-art methods, achieving accuracies of 93.4% on the NTU RGB+D 60 cross-subject split and 90.7% on the NTU RGB+D 120 cross-subject split.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Temporal Decoupling Graph Convolutional Network for Skeleton-Based Gesture Recognition
    Liu, Jinfu
    Wang, Xinshun
    Wang, Can
    Gao, Yuan
    Liu, Mengyuan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 811 - 823
  • [42] Dynamic spatial-temporal topology graph network for skeleton-based action recognition
    Chen, Lian
    Lu, Ke
    Niu, Zehai
    Wei, Runchen
    Xue, Jian
    MULTIMEDIA SYSTEMS, 2024, 30 (06)
  • [43] Skeleton-Based Action Recognition With Multi-Stream Adaptive Graph Convolutional Networks
    Shi, Lei
    Zhang, Yifan
    Cheng, Jian
    Lu, Hanqing
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 9532 - 9545
  • [44] Adversarial Graph Convolutional Network for Skeleton-Based Early Action Prediction
    Li, Xian-Shan
    Zhang, Neng
    Cai, Bin-Quan
    Kang, Jing-Wen
    Zhao, Feng-Da
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2024, 39 (06) : 1269 - 1280
  • [45] PGCN-TCA: Pseudo Graph Convolutional Network With Temporal and Channel-Wise Attention for Skeleton-Based Action Recognition
    Yang, Hongye
    Gu, Yuzhang
    Zhu, Jianchao
    Hu, Keli
    Zhang, Xiaolin
    IEEE ACCESS, 2020, 8 : 10040 - 10047
  • [46] Pose-Guided Graph Convolutional Networks for Skeleton-Based Action Recognition
    Chen, Han
    Jiang, Yifan
    Ko, Hanseok
    IEEE ACCESS, 2022, 10 : 111725 - 111731
  • [47] Skeleton action recognition via graph convolutional network with self-attention module
    Li, Min
    Chen, Ke
    Bai, Yunqing
    Pei, Jihong
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (04): : 2848 - 2864
  • [48] Skeleton-Based Action Recognition With Focusing-Diffusion Graph Convolutional Networks
    Gao, Jialin
    He, Tong
    Zhou, Xi
    Ge, Shiming
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 2058 - 2062
  • [49] An Efficient Graph Convolution Network for Skeleton-Based Dynamic Hand Gesture Recognition
    Peng, Sheng-Hui
    Tsai, Pei-Hsuan
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2023, 15 (04) : 2179 - 2189
  • [50] Hierarchical Aggregated Graph Neural Network for Skeleton-Based Action Recognition
    Geng, Pei
    Lu, Xuequan
    Li, Wanqing
    Lyu, Lei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 11003 - 11017