Lightweight multi-scale distillation attention network for image super-resolution

被引:0
|
作者
Tang, Yinggan [1 ,2 ,3 ]
Hu, Quanwei [1 ]
Bu, Chunning [4 ]
机构
[1] Yanshan Univ, Sch Elect Engn, Qinhuangdao 066004, Hebei, Peoples R China
[2] Yanshan Univ, Key Lab Intelligent Rehabil & Neromodulat Hebei Pr, Qinhuangdao 066004, Hebei, Peoples R China
[3] Yanshan Univ, Key Lab Intelligent Control & Neural Informat Proc, Minist Educ, Qinhuangdao 066000, Hebei, Peoples R China
[4] Cangzhou Jiaotong Coll, Sch Elect & Elect Engn, Cangzhou 061110, Hebei, Peoples R China
关键词
Super-resolution; Lightweight network; Convolutional neural network; Information distillation; Multi-scale;
D O I
10.1016/j.knosys.2024.112807
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional neural networks (CNNs) with deep structure have achieved remarkable image super-resolution (SR) performance. However, the dramatically increased model parameters and computations make them difficult to deploy on low-computing-power devices. To address this issue, a lightweight multi-scale distillation attention network (MSDAN) is proposed for image SR in this paper. Specially, we design an effective branch fusion block (EBFB) by utilizing pixel attention with different kernel sizes via distillation connection, which can extract features from different receptive fields and obtain the attention coefficients for all pixels in the feature maps. Additionally, we further propose an enhanced multi-scale spatial attention (EMSSA) by utilizing AdaptiveMaxPooland convolution kernel with different sizes to construct multiple downsampling branches, which possesses adaptive spatial information extraction ability and maintains large receptive field. Extensive experiments demonstrate the superiority of the proposed model over most state-of-the-art (SOTA) lightweight SR models. Most importantly, compared to residual feature distillation network (RFDN), the proposed model achieves 0.11 improvement of PSNR on Set14 dataset with 57.5% fewer parameters and 20.3% less computational cost at x4 upsampling factor. The code of this paper is available at https://github. com/Supereeeee/MSDAN.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
    Zhang, Min
    Wang, Huibin
    Zhang, Zhen
    Chen, Zhe
    Shen, Jie
    MICROMACHINES, 2022, 13 (01)
  • [2] A lightweight multi-scale channel attention network for image super-resolution
    Li, Wenbin
    Li, Juefei
    Li, Jinxin
    Huang, Zhiyong
    Zhou, Dengwen
    NEUROCOMPUTING, 2021, 456 : 327 - 337
  • [3] Multi-scale convolutional attention network for lightweight image super-resolution
    Xie, Feng
    Lu, Pei
    Liu, Xiaoyong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 95
  • [4] Multi-scale attention network for image super-resolution
    Wang, Li
    Shen, Jie
    Tang, E.
    Zheng, Shengnan
    Xu, Lizhong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 80
  • [5] LMSN:a lightweight multi-scale network for single image super-resolution
    Yiye Zou
    Xiaomin Yang
    Marcelo Keese Albertini
    Farhan Hussain
    Multimedia Systems, 2021, 27 : 845 - 856
  • [6] LMSN:a lightweight multi-scale network for single image super-resolution
    Zou, Yiye
    Yang, Xiaomin
    Albertini, Marcelo Keese
    Hussain, Farhan
    MULTIMEDIA SYSTEMS, 2021, 27 (04) : 845 - 856
  • [7] Super-Resolution Network with Information Distillation and Multi-Scale Attention for Medical CT Image
    Zhao, Tianliu
    Hu, Lei
    Zhang, Yongmei
    Fang, Jianying
    SENSORS, 2021, 21 (20)
  • [8] Image Super-Resolution Reconstruction Based on Lightweight Multi-Scale Channel Attention Network
    Zhou D.-W.
    Li W.-B.
    Li J.-X.
    Huang Z.-Y.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (10): : 2336 - 2346
  • [9] Lightweight Image Super-Resolution by Multi-Scale Aggregation
    Wan, Jin
    Yin, Hui
    Liu, Zhihao
    Chong, Aixin
    Liu, Yanting
    IEEE TRANSACTIONS ON BROADCASTING, 2021, 67 (02) : 372 - 382
  • [10] Single image super-resolution with lightweight multi-scale dilated attention network
    Song, Xiaogang
    Pang, Xinchao
    Zhang, Lei
    Lu, Xiaofeng
    Hei, Xinhong
    APPLIED SOFT COMPUTING, 2025, 169