Stage-by-Stage Wavelet Optimization Refinement Diffusion Model for Sparse-View CT Reconstruction

被引:13
|
作者
Xu, Kai [1 ]
Lu, Shiyu [1 ]
Huang, Bin [1 ]
Wu, Weiwen [2 ]
Liu, Qiegen [3 ]
机构
[1] Nanchang Univ, Sch Math & Comp Sci, Nanchang 330031, Peoples R China
[2] Sun Yat Sen Univ, Sch Biomed Engn, Shenzhen 518107, Guangdong, Peoples R China
[3] Nanchang Univ, Sch Informat Engn, Nanchang 330031, Peoples R China
基金
中国国家自然科学基金;
关键词
Image reconstruction; Wavelet transforms; Computed tomography; Mathematical models; Training; Wavelet domain; Optimization; sparse-view; image reconstruction; diffusion model; wavelet transform; NEURAL-NETWORK;
D O I
10.1109/TMI.2024.3355455
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Diffusion model has emerged as a potential tool to tackle the challenge of sparse-view CT reconstruction, displaying superior performance compared to conventional methods. Nevertheless, these prevailing diffusion models predominantly focus on the sinogram or image domains, which can lead to instability during model training, potentially culminating in convergence towards local minimal solutions. The wavelet transform serves to disentangle image contents and features into distinct frequency-component bands at varying scales, adeptly capturing diverse directional structures. Employing the wavelet transform as a guiding sparsity prior significantly enhances the robustness of diffusion models. In this study, we present an innovative approach named the Stage-by-stage Wavelet Optimization Refinement Diffusion (SWORD) model for sparse-view CT reconstruction. Specifically, we establish a unified mathematical model integrating low-frequency and high-frequency generative models, achieving the solution with an optimization procedure. Furthermore, we perform the low-frequency and high-frequency generative models on wavelet's decomposed components rather than the original sinogram, ensuring the stability of model training. Our method is rooted in established optimization theory, comprising three distinct stages, including low-frequency generation, high-frequency refinement and domain transform. The experimental results demonstrated that the proposed method outperformed existing state-of-the-art methods both quantitatively and qualitatively.
引用
收藏
页码:3412 / 3424
页数:13
相关论文
共 50 条
  • [1] Deep Embedding-Attention-Refinement for Sparse-View CT Reconstruction
    Wu, Weiwen
    Guo, Xiaodong
    Chen, Yang
    Wang, Shaoyu
    Chen, Jun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [2] Deep Embedding-Attention-Refinement for Sparse-View CT Reconstruction
    Wu, Weiwen
    Guo, Xiaodong
    Chen, Yang
    Wang, Shaoyu
    Chen, Jun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [3] Sparse-view CT reconstruction with improved GoogLeNet
    Xie, Shipeng
    Zhang, Pengcheng
    Luo, Limin
    Li, Haibo
    MEDICAL IMAGING 2018: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2018, 10578
  • [4] Deep Embedding-Attention-Refinement for Sparse-View CT Reconstruction
    Wu, Weiwen
    Guo, Xiaodong
    Chen, Yang
    Wang, Shaoyu
    Chen, Jun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [5] A Transformer-Based Iterative Reconstruction Model for Sparse-View CT Reconstruction
    Xia, Wenjun
    Yang, Ziyuan
    Zhou, Qizheng
    Lu, Zexin
    Wang, Zhongxian
    Zhang, Yi
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VI, 2022, 13436 : 790 - 800
  • [6] Optimization of sparse-view CT reconstruction based on convolutional neural network
    Lv, Liangliang
    Li, Chang
    Wei, Wenjing
    Sun, Shuyi
    Ren, Xiaoxuan
    Pan, Xiaodong
    Li, Gongping
    MEDICAL PHYSICS, 2025, : 2089 - 2105
  • [7] A Dual-Domain Diffusion Model for Sparse-View CT Reconstruction
    Yang, Chun
    Sheng, Dian
    Yang, Bo
    Zheng, Wenfeng
    Liu, Chao
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1279 - 1283
  • [8] Sparse-View CT Reconstruction Based on a Hybrid Domain Model with Multi-Level Wavelet Transform
    Bai, Jielin
    Liu, Yitong
    Yang, Hongwen
    SENSORS, 2022, 22 (09)
  • [9] Generative Modeling in Sinogram Domain for Sparse-View CT Reconstruction
    Guan, Bing
    Yang, Cailian
    Zhang, Liu
    Niu, Shanzhou
    Zhang, Minghui
    Wang, Yuhao
    Wu, Weiwen
    Liu, Qiegen
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2024, 8 (02) : 195 - 207
  • [10] Dual-domain sparse-view CT reconstruction with Transformers
    Shi, Changrong
    Xiao, Yongshun
    Chen, Zhiqiang
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2022, 101 : 1 - 7