An Interpretable Electric Vehicles Battery State of Charge Estimation Using MHDTCN-GRU

被引:1
作者
Padmanabhan, N. K. Anantha [1 ]
Rithish, Javvaji R. V. M. [1 ]
Nath, Aneesh G. [2 ]
Singh, Sanjay Kumar [1 ]
Singh, Rajeev Kumar [3 ]
机构
[1] Indian Inst Technol BHU, Dept Comp Sci & Engn, Varanasi 221005, India
[2] TKM Coll Engn, Comp Sci & Engn Dept, Kollam 691005, India
[3] Indian Inst Technol BHU, Dept Elect Engn, Varanasi 221005, India
关键词
State of charge; Estimation; Batteries; Logic gates; Convolution; Convolutional neural networks; Computer architecture; Battery management systems; electric vehicles; multi-head dilated temporal convolutional network (MHDTCN); gated recurrent unit (GRU); state of charge estimation; LITHIUM-ION BATTERIES; MODEL;
D O I
10.1109/TVT.2024.3447228
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Lithium-ion batteries are the driving force behind electric vehicles and portable electronic devices. Accurate estimation of the state of charge in lithium-ion batteries is crucial for optimizing battery performance and improving energy efficiency. This paper proposes a novel hybrid model that combines a multi-head dilated temporal convolutional network architecture with a gated recurrent unit to anticipate the state of charge levels. The novel multi-head architecture of the dilated temporal convolutional network facilitates simultaneous learning of patterns across different scales, allowing the model to adapt to new patterns quickly. The diverse dilation rates in the dilated temporal convolutional network enhance the model's capability to capture long-term sequences, while the gated recurrent unit focuses on short-term dependencies, offering a versatile state of charge estimation method suitable for various environmental conditions. Additionally, the incorporation of the explainable artificial intelligence technique - Shapley Additive exPlanations aids in achieving global interpretability for state of charge prediction, offering a precise quantification of the influence of individual attributes. Comprehensive experiments were conducted across various temperatures and driving cycles to demonstrate the effectiveness of the proposed model. The computation results indicate the proposed method's adaptability to varying conditions, achieving high estimation accuracy and robustness with a mean absolute percentage error and root mean square percentage error of 0.54% and 0.84%, respectively, along with a parameter count of 3,74,433. Moreover, the proposed architecture enhances state of charge estimation performance compared to existing models across multiple datasets while maintaining a more efficient parameter count.
引用
收藏
页码:18527 / 18538
页数:12
相关论文
共 50 条
  • [41] A Hybrid Approach for State-of-Charge Forecasting in Battery-Powered Electric Vehicles
    NaitMalek, Youssef
    Najib, Mehdi
    Lahlou, Anas
    Bakhouya, Mohamed
    Gaber, Jaafar
    Essaaidi, Mohamed
    SUSTAINABILITY, 2022, 14 (16)
  • [42] Extended Kalman Filter Based Battery State of Charge(SOC) Estimation for Electric Vehicles
    Jiang, Chenguang
    Taylor, Allan
    Duan, Chen
    Bai, Kevin
    2013 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2013,
  • [43] Battery pack topology structure on state-of-charge estimation accuracy in electric vehicles
    Wang, Limei
    Zhao, Xiuliang
    Liu, Liang
    Wang, Ruochen
    ELECTROCHIMICA ACTA, 2016, 219 : 711 - 720
  • [44] State of charge estimation techniques for battery management system used in electric vehicles: a review
    Mukherjee, Sayantika
    Chowdhury, Kunal
    ENERGY SYSTEMS-OPTIMIZATION MODELING SIMULATION AND ECONOMIC ASPECTS, 2023,
  • [45] Estimation of state of charge of batteries for electric vehicles
    Wang, H. (why.69@163.com), 1600, Science and Engineering Research Support Society, 20 Virginia Court, Sandy Bay, Tasmania, Australia (06):
  • [46] Review of Management System and State-of-Charge Estimation Methods for Electric Vehicles
    Sarda, Jigar
    Patel, Hirva
    Popat, Yashvi
    Hui, Kueh Lee
    Sain, Mangal
    WORLD ELECTRIC VEHICLE JOURNAL, 2023, 14 (12):
  • [47] Disturbance observer-based state-of-charge estimation for Li-ion battery used in light electric vehicles
    Messier, Pascal
    Bao-Huy Nguyen
    LeBel, Felix-A
    Trovao, Joao Pedro F.
    JOURNAL OF ENERGY STORAGE, 2020, 27 (27):
  • [48] Estimation of State of Charge of a Lithium-Ion Battery Pack for Electric Vehicles Using an Adaptive Luenberger Observer
    Hu, Xiaosong
    Sun, Fengchun
    Zou, Yuan
    ENERGIES, 2010, 3 (09): : 1586 - 1603
  • [49] State of Charge Estimation of Lithium Batteries in Electric Vehicles Using IndRNN
    Venugopal, Prakash
    Vigneswaran, T.
    Reka, Sofana S.
    IETE JOURNAL OF RESEARCH, 2023, 69 (05) : 2886 - 2896
  • [50] Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles
    Li, Xiaoyu
    Wang, Zhenpo
    Zhang, Lei
    ENERGY, 2019, 174 : 33 - 44