Corporate risk stratification through an interpretable autoencoder-based model

被引:0
作者
Giuliani, Alessandro [1 ]
Savona, Roberto [2 ]
Carta, Salvatore [1 ]
Addari, Gianmarco [3 ]
Podda, Alessandro Sebastian [1 ]
机构
[1] Univ Cagliari, Dept Math & Comp Sci, Palazzo Sci,Via Osped 72, I-09124 Cagliari, Italy
[2] Univ Brescia, Dept Econ & Management, Via San Faustino 74-B, I-25122 Brescia, Italy
[3] VisioScientiae Srl, Via San Tommaso Aquino 20, I-09134 Cagliari, Italy
关键词
Deep learning; Autoencoder; Balance sheets; Corporate risk; Financial sustainability; FINANCIAL RATIOS; PREDICTION;
D O I
10.1016/j.cor.2024.106884
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this manuscript, we propose an innovative early warning Machine Learning-based model to identify potential threats to financial sustainability for non-financial companies. Unlike most state-of-the-art tools, whose outcomes are often difficult to understand even for experts, our model provides an easily interpretable visualization of balance sheets, projecting each company in a bi-dimensional space according to an autoencoder-based dimensionality reduction matched with a Nearest-Neighbor-based default density estimation. In the resulting space, the distress zones, where the default intensity is high, appear as homogeneous clusters directly identified. Our empirical experiments provide evidence of the interpretability, forecasting ability, and robustness of the bi-dimensional space.
引用
收藏
页数:16
相关论文
共 50 条
[31]   Dose Reduction in Scintigraphic Imaging Through Enhanced Convolutional Autoencoder-Based Denoising [J].
Bouzianis, Nikolaos ;
Stathopoulos, Ioannis ;
Valsamaki, Pipitsa ;
Rapti, Efthymia ;
Trikopani, Ekaterini ;
Apostolidou, Vasiliki ;
Kotini, Athanasia ;
Zissimopoulos, Athanasios ;
Adamopoulos, Adam ;
Karavasilis, Efstratios .
JOURNAL OF IMAGING, 2025, 11 (06)
[32]   Autoencoder-based detector for distinguishing process anomaly and sensor failure [J].
Lee, Chia-Yen ;
Chang, Kai ;
Ho, Chien .
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2024, 62 (19) :7130-7145
[33]   Development of deep autoencoder-based anomaly detection system for HANARO [J].
Ryu, Seunghyoung ;
Jeon, Byoungil ;
Seo, Hogeon ;
Lee, Minwoo ;
Shin, Jin-Won ;
Yu, Yonggyun .
NUCLEAR ENGINEERING AND TECHNOLOGY, 2023, 55 (02) :475-483
[34]   A convolutional autoencoder-based approach with batch normalization for energy disaggregation [J].
Huan Chen ;
Yue-Hsien Wang ;
Chun-Hung Fan .
The Journal of Supercomputing, 2021, 77 :2961-2978
[35]   A convolutional autoencoder-based approach with batch normalization for energy disaggregation [J].
Chen, Huan ;
Wang, Yue-Hsien ;
Fan, Chun-Hung .
JOURNAL OF SUPERCOMPUTING, 2021, 77 (03) :2961-2978
[36]   Autoencoder-Based Prediction of ICU Clinical Codes [J].
Yordanov, Tsvetan R. ;
Abu-Hanna, Ameen ;
Ravelli, Anita C. J. ;
Vagliano, Iacopo .
ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2023, 2023, 13897 :57-62
[37]   Autoencoder-Based Unequal Error Protection Codes [J].
Ninkovic, Vukan ;
Vukobratovic, Dejan ;
Haeger, Christian ;
Wymeersch, Henk ;
Amat, Alexandre Graell i .
IEEE COMMUNICATIONS LETTERS, 2021, 25 (11) :3575-3579
[38]   Autoencoder-based intra prediction with auxiliary feature [J].
Xu, Luhang ;
Yu, Yue ;
Yu, Haoping ;
Wang, Dong .
2022 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2022,
[39]   DeepStream: Autoencoder-Based Stream Temporal Clustering [J].
Harush, Shimon ;
Meidan, Yair ;
Shabtai, Asaf .
36TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2021, 2021, :445-448
[40]   Autoencoder-Based Gradient Compression for Distributed Training [J].
Abrahamyan, Lusine ;
Chen, Yiming ;
Bekoulis, Giannis ;
Deligiannis, Nikos .
29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, :2179-2183