Nascent RNA kinetics with complex promoter architecture: Analytic results and parameter inference
被引:0
|
作者:
Shi, Changhong
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Med Univ, Sch Publ Hlth, Guangzhou, Peoples R ChinaGuangzhou Med Univ, Sch Publ Hlth, Guangzhou, Peoples R China
Shi, Changhong
[1
]
Yang, Xiyan
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Finance, Sch Financial Math & Stat, Guangzhou, Peoples R ChinaGuangzhou Med Univ, Sch Publ Hlth, Guangzhou, Peoples R China
Yang, Xiyan
[2
]
Zhou, Tianshou
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Math, Guangzhou, Peoples R China
Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou, Peoples R ChinaGuangzhou Med Univ, Sch Publ Hlth, Guangzhou, Peoples R China
Zhou, Tianshou
[3
,4
]
Zhang, Jiajun
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Math, Guangzhou, Peoples R China
Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou, Peoples R ChinaGuangzhou Med Univ, Sch Publ Hlth, Guangzhou, Peoples R China
Zhang, Jiajun
[3
,4
]
机构:
[1] Guangzhou Med Univ, Sch Publ Hlth, Guangzhou, Peoples R China
[2] Guangdong Univ Finance, Sch Financial Math & Stat, Guangzhou, Peoples R China
[3] Sun Yat Sen Univ, Sch Math, Guangzhou, Peoples R China
[4] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou, Peoples R China
Transcription is a stochastic process that involves several downstream operations which make it difficult to model and infer transcription kinetics from mature RNA numbers in individual cell. However, recent advances in single-cell technologies have enabled a more precise measurement of the fluctuations of nascent RNA that closely reflect transcription kinetics. In this paper we introduce a general stochastic model to mimic nascent RNA kinetics with complex promoter architecture. We derive the exact distribution and moments of nascent RNA using queuing theory techniques, which provide valuable insights into the effect of the molecular memory created by the multistep activation and deactivation on the stochastic kinetics of nascent RNA. Moreover, based on the analytical results, we develop a statistical method to infer the promoter memory from stationary nascent RNA distributions. Data analysis of synthetic data and a realistic example, the HIV-] gene, verifies the validity of this inference method.
机构:
Beijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing 100193, Peoples R ChinaBeijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing 100193, Peoples R China
Jia, Chen
Singh, Abhyudai
论文数: 0引用数: 0
h-index: 0
机构:
Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USABeijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing 100193, Peoples R China