Effect of melt superheating on the sub-rapidly solidified microstructure of AISI 304 austenitic stainless steel strip

被引:0
|
作者
Ma, Jianchao [1 ]
Yang, Yuansheng [1 ]
Tong, Wenhui [1 ]
机构
[1] Institute of Metal Research, Chinese Acad. of Sci., Shenyang 110016, China
来源
关键词
Casting; -; Ferrite; Microstructure; Solidification; Supercooling;
D O I
暂无
中图分类号
学科分类号
摘要
The effect of melt superheating on the sub-rapidly solidified microstructure of AISI 304 austenitic stainless steel strip cast by water-cooled copper mould casting was investigated. The results show that the solidified microstructures from surface to center of the as-cast strip are cellular austenite, columnar ferrite dendrite and equiaxed ferrite dendrite, respectively. With the increase of superheating, both the primary arm spacing of cellular austenite and the secondary arm spacing of ferrite dendrite raise, while the delta ferrite fraction decreases. As the melt superheating raises, the supercooling of melt falls, then the cooling rate of melt decreases, resulting in the increase of dendritic arm spacings of austenite and delta ferrite. The decrease of cooling rate also accelerates the transformation from delta ferrite to austenite during the subsequent cooling process after solidification, leading to the reduction of residual delta ferrite fraction.
引用
收藏
页码:879 / 882
相关论文
共 50 条
  • [21] Microstructural plastic behaviour of AISI 304 austenitic stainless steel
    Vieira, MM
    Chaparro, BM
    Vieira, MF
    Fernandes, JV
    ADVANCED MATERIALS FORUM II, 2004, 455-456 : 280 - 284
  • [22] Microstructure Evolution of Laser Welded 301LN and AISI 304 Austenitic Stainless Steel
    Li, Xiqing
    Liu, Wei
    Guo, Xiangzhong
    Zhang, Zhiguo
    Song, Zhikun
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2023, 54 (04): : 1186 - 1198
  • [23] Friction stir welding of AISI 304 austenitic stainless steel
    Meran, C.
    Kovan, V.
    Alptekin, A.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2007, 38 (10) : 829 - 835
  • [24] Microstructure Evolution of Laser Welded 301LN and AISI 304 Austenitic Stainless Steel
    Xiqing Li
    Wei Liu
    Xiangzhong Guo
    Zhiguo Zhang
    Zhikun Song
    Metallurgical and Materials Transactions A, 2023, 54 : 1186 - 1198
  • [25] Effect of Plasma Nitriding and Sensitization on the Microstructure and Microhardness of AISI 304 Austenitic Steel
    Slezak, Martin
    Uhricik, Milan
    Palcek, Peter
    Chvalnikova, Veronika
    Drimalova, Petra
    Sikyna, Lukas
    MANUFACTURING TECHNOLOGY, 2023, 23 (06): : 909 - 916
  • [26] THE MICROSTRUCTURE AND PHASE-RELATIONSHIPS IN RAPIDLY SOLIDIFIED TYPE 304 STAINLESS-STEEL POWDERS
    BAE, JC
    KELLY, TF
    FLINN, JE
    WRIGHT, RN
    KORTH, GE
    JOURNAL OF METALS, 1987, 39 (10): : A11 - A11
  • [27] Properties of a 304 austenitic stainless steel hot strip by TMCP
    Han Jian
    Wang Zhi-yu
    Jiang Lai-zhu
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2007, 14 : 282 - 287
  • [28] Effect of magnetic field on the pitting corrosion of austenitic stainless steel Type AISI 304
    Rokosz, Krzysztof
    Hryniewicz, Tadeusz
    OCHRONA PRZED KOROZJA, 2011, 54 (07): : 487 - 491
  • [29] Effect of Mean Stress on Ratcheting of Austenitic Stainless Steel (AISI 304) at Room Temperature
    Maity, Saikat Ranjan
    Kumar, Sunil
    Patnaik, Lokeswar
    PHYSICS OF METALS AND METALLOGRAPHY, 2022, 123 (14): : 1509 - 1517
  • [30] Effect of Carbon and Nitrogen content on deformation and fracture of AISI 304 austenitic stainless steel
    Molinari, A.
    Composta, M.
    Menapace, C.
    FRATTURA ED INTEGRITA STRUTTURALE, 2008, (04): : 12 - 19