Frequent oil spills and the discharge of oily wastewater have adverse effects on the environment and ecosystems. Against the backdrop of escalating environmental concerns, developing high-performing and eco-friendly oil- water separation techniques is crucial. In this study, we successfully created a PFOTS-Zn/Ni superhydrophobicsuperoleophilic coating, abbreviated as PZNM, by electroplating Zn2+ 2+ and Ni2+ 2+ on the stainless steel mesh, followed by modification with perfluorooctyltriethoxysilane-ethanol solution. The wettability test results show that the water contact angle (WCA) reaches 161.3 degrees, degrees , with a water sliding angle (WSA) of 2 degrees, degrees , and the oil contact angle (OCA) is approximately 0 degrees. degrees . Subsequently, the PZNM samples were subjected to tests including blade scratching combined with sandpaper abrasion, tape peeling, bending tests, submerging in acidic and alkaline solutions, high-temperature gradient exposure, and electrochemical corrosion to verify their outstanding longterm durability. Most importantly, it can be shaped into a practical continuous oil-water separation device. In the oil-water separation test, it was found that the superhydrophobic-superoleophilic PZNM achieves highly efficient oil-water separation, with a water/n-hexadecane separation efficiency of up to 93.2% and a water- chloroform separation flux of 6450 +/- 30 L & sdot;m- & sdot; m- 2 & sdot;h-1. & sdot; h- 1 . The preparation process is straightforward and green, providing an economical solution. This design holds considerable prospects for applications in the domain of oil- water separation.