The Human in the Smart Factory Human-in-The-Loop: A Human-centered Approach to Knowledge Augmentation with Machine Learning

被引:0
|
作者
Lück M. [1 ]
Hornung T. [1 ]
Teklezgi J. [1 ]
机构
[1] Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO, Universität Stuttgart, Institut für Arbeitswissenschaften und Technologiemanagement IAT, Nobelstr. 12, Stuttgart
来源
ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb | 2024年 / 119卷 / 06期
关键词
Explainability; Industrial Manufacturing; Machine Learning; Process Knowledge; Quality Assurance;
D O I
10.1515/zwf-2024-1064
中图分类号
学科分类号
摘要
The seamless merging of the physical and digital worlds, has led to an unprecedented increase in the speed at which automation can be introduced into production. can be introduced. Smart manufacturing systems will, at a fundamental level, enable the use of artificial intelligence (AI) through machine learning (ML). This involves the alignment of information flows through suitable interfaces to humans is essential. is indispensable. This human-centered approach is referred to as Industry 5.0 (I5.0) or the human-centered approach (HCA) [1, 2]. The prioritization of people can be achieved prioritization can be achieved by placing the process-related interests of people at the at the center of production monitoring and relying on technologies that help employees by developing knowledge and skills, initiate optimizations. © 2024 Walter de Gruyter GmbH, Berlin/Boston, Germany.
引用
收藏
页码:456 / 459
页数:3
相关论文
共 50 条
  • [21] Towards Guidelines for Designing Human-in-the-Loop Machine Training Interfaces
    van der Stappen, Almar
    Funk, Mathias
    IUI '21 - 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, 2021, : 514 - 519
  • [22] Towards Explainable Automatic Knowledge Graph Construction with Human-in-the-Loop
    Zhang, Bohui
    Merono Penuela, Albert
    Simperl, Elena
    HHAI 2023: AUGMENTING HUMAN INTELLECT, 2023, 368 : 274 - 289
  • [23] Improving Understandability and Control in Data Preparation: A Human-Centered Approach
    Pucci, Emanuele
    Sancricca, Camilla
    Ando, Salvatore
    Cappiello, Cinzia
    Matera, Maristella
    Barberio, Anna
    ADVANCED INFORMATION SYSTEMS ENGINEERING, CAISE 2024, 2024, 14663 : 284 - 299
  • [24] Learning-Based Methods with Human-in-the-Loop for Entity Resolution
    Gurajada, Sairam
    Popa, Lucian
    Qian, Kun
    Sen, Prithviraj
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2969 - 2970
  • [25] Applying Human-Centered Design and Human-Machine Integration Techniques to Solve Key Healthcare Problems
    Gomes, Neil
    Patwardhan, Viraj
    HUMAN SYSTEMS ENGINEERING AND DESIGN, IHSED2018, 2019, 876 : 3 - 9
  • [26] A Human-in-the-Loop Approach based on Explainability to Improve NTL Detection
    Coma-Puig, Bernat
    Carmona, Josep
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 943 - 950
  • [27] Human-in-the-Loop Data Integration System
    Sun J.
    Li G.-L.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (03): : 654 - 668
  • [28] Human-in-the-Loop Personalized Counterfactual Recourse
    Abrate, Carlo
    Siciliano, Federico
    Bonchi, Francesco
    Silvestri, Fabrizio
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, PT III, XAI 2024, 2024, 2155 : 18 - 38
  • [29] Human-in-the-Loop-Approach for Smplified Machine Learning in Fault Management
    Knitter L.
    Jagusch K.
    Scharr C.
    Heinze C.
    Sender J.
    Flügge W.
    ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2022, 117 (10): : 623 - 628
  • [30] What you see is what you can change: Human-centered machine learning by interactive visualization
    Sacha, Dominik
    Sedlmair, Michael
    Zhang, Leishi
    Lee, John A.
    Peltonen, Jaakko
    Weiskopf, Daniel
    North, Stephen C.
    Keim, Daniel A.
    NEUROCOMPUTING, 2017, 268 : 164 - 175