Latent space dynamics learning for stiff collisional-radiative models

被引:0
|
作者
Xie, Xuping [1 ,2 ]
Tang, Qi [1 ,3 ]
Tang, Xianzhu [1 ]
机构
[1] Theoretical Division, Los Alamos National Laboratory, Los Alamos,NM,87545, United States
[2] Department of Mathematics and Statistics, Old Dominion University, Norfolk,VA,23529, United States
[3] School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta,GA,30332, United States
来源
关键词
Auto encoders - Collisional - Collisional radiative model - Dynamic learning - Learn+ - Neural-networks - Plasma physics - Plasma-Simulation - Reduced order modelling - Reduced-order model;
D O I
10.1088/2632-2153/ad9ce7
中图分类号
学科分类号
摘要
In this work, we propose a data-driven method to discover the latent space and learn the corresponding latent dynamics for a collisional-radiative (CR) model in radiative plasma simulations. The CR model, consisting of high-dimensional stiff ordinary differential equations, must be solved at each grid point in the configuration space, leading to significant computational costs in plasma simulations. Our method employs a physics-assisted autoencoder to extract a low-dimensional latent representation of the original CR system. A flow map neural network is then used to learn the latent dynamics. Once trained, the reduced surrogate model predicts the entire latent dynamics given only the initial condition by iteratively applying the flow map. The radiative power loss (RPL) is then reconstructed using a decoder. Numerical experiments demonstrate that the proposed architecture can accurately predict both the full-order CR dynamics and the RPL rate. © 2024 The Author(s). Published by IOP Publishing Ltd.
引用
收藏
相关论文
共 50 条
  • [21] COLLISIONAL-RADIATIVE RECOMBINATION AT LOW TEMPERATURES + DENSITIES
    BATES, DR
    KINGSTON, AE
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1964, 83 (5311): : 43 - &
  • [22] COLLISIONAL-RADIATIVE DECAY OF SPARK CHANNELS IN HYDROGEN
    JANSSEN, JJ
    CRAGGS, JD
    JOURNAL OF PHYSICS PART B ATOMIC AND MOLECULAR PHYSICS, 1972, 5 (01): : 89 - &
  • [23] Elaboration of collisional-radiative models for flows related to planetary entries into the Earth and Mars atmospheres
    Bultel, Arnaud
    Annaloro, Julien
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2013, 22 (02):
  • [24] Benchmark of collisional-radiative models for ITER beams at the Alcator C-Mod tokamak
    Bespamyatnov, I. O.
    Rowan, W. L.
    Liao, K. T.
    Marchuk, O.
    Ralchenko, Yu.
    Granetz, R. S.
    NUCLEAR FUSION, 2013, 53 (12)
  • [25] Insights from Collisional-Radiative Models of Neutral and Singly Ionized Xenon in Hall Thrusters
    Chaplin, Vernon H.
    Johnson, Lee K.
    Lobbia, Robert B.
    Konopliv, Mary F.
    Simka, Timothy
    Wirz, Richard E.
    JOURNAL OF PROPULSION AND POWER, 2022, 38 (05) : 866 - 879
  • [26] Complexity-reduction using automatic level grouping for atomic collisional-radiative models
    Abrantes, R. J. E.
    Sousa, E.
    Bilyeu, D.
    Martin, R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 407 (407)
  • [27] Validity of analytical formulas for autoionization and dielectronic capture rates used in collisional-radiative models
    Gao, Cheng
    Zeng, Jiaolong
    PHYSICAL REVIEW A, 2010, 82 (06):
  • [28] Collisional-Radiative Modeling Behind Shock Waves in Nitrogen
    Annaloro, Julien
    Bultel, Arnaud
    Omaly, Pierre
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2014, 28 (04) : 608 - 622
  • [29] Collisional-radiative model for neutral helium in plasma revisited
    Goto, M
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2003, 76 (3-4): : 331 - 344
  • [30] Collisional-radiative simulation of impurity assimilation, radiative collapse and MHD dynamics after ITER shattered pellet injection
    Hu, D.
    Nardon, E.
    Artola, F. J.
    Lehnen, M.
    Bonfiglio, D.
    Hoelzl, M.
    Huijsmans, G. T. A.
    Lee, S. -j.
    NUCLEAR FUSION, 2023, 63 (06)