Zipper quintic fractal interpolation function for curve fitting

被引:0
作者
Department of Mathematics, Chandigarh University, NH-05, Ludhiana – Chandigarh State Hwy, Gharuan, Punjab, Mohali [1 ]
140413, India
机构
[1] Department of Mathematics, Chandigarh University, NH-05, Ludhiana – Chandigarh State Hwy, Gharuan, Punjab, Mohali
来源
Int. J. Comput. Sci. Math. | 2024年 / 2卷 / 118-131期
关键词
IFS; iterated function system; positivity; rational quintic fractal interpolation function; RQFIF; ZFIF; zipper; zipper fractal interpolation function;
D O I
10.1504/IJCSM.2024.140889
中图分类号
学科分类号
摘要
In this paper, we introduce a class of novel C2 -zipper rational quintic fractal interpolation functions (Zipper-RQFIF) with variable scalings in the form of a rational type that has a quintic polynomial in the numerator and a quadratic polynomial in the denominator with three shape control parameters. We restrict the scaling functions and shape control parameters so that the proposed Zipper-RQFIF is positive when the given dataset is positive. Using this sufficient condition, some numerical examples of positive Zipper-RQFIF are presented to support our theory. This paper approaches the zipper rational quintic fractal interpolation problem as a generalisation of both quintic fractal and affine zipper fractal interpolants, which show more versatility and flexibility than classical and fractal interpolation functions (FIFs). © 2024 Inderscience Enterprises Ltd.
引用
收藏
页码:118 / 131
页数:13
相关论文
共 50 条
  • [31] A new class of rational cubic spline fractal interpolation function and its constrained aspects
    Katiyar, S. K.
    Chand, A. K. B.
    Kumar, G. Saravana
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 : 319 - 335
  • [32] NONLINEAR FRACTAL INTERPOLATION CURVES WITH FUNCTION VERTICAL SCALING FACTORS
    Kim, JinMyong
    Kim, HyonJin
    Mun, HakMyong
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (02) : 483 - 499
  • [33] Nonlinear fractal interpolation curves with function vertical scaling factors
    JinMyong Kim
    HyonJin Kim
    HakMyong Mun
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 483 - 499
  • [34] α-FRACTAL RATIONAL SPLINES FOR CONSTRAINED INTERPOLATION
    Viswanathan, Puthan Veedu
    Chand, Arya Kumar Bedabrata
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2014, 41 : 420 - 442
  • [35] Riemann Liouville fractional integral of hidden variable fractal interpolation function
    Ri, Mi-Gyong
    Yun, Chol-Hui
    CHAOS SOLITONS & FRACTALS, 2020, 140 (140)
  • [36] Non-stationary zipper α-fractal functions and associated fractal operator
    Jha, Sangita
    Verma, Saurabh
    Chand, Arya K. B.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (04) : 1527 - 1552
  • [37] Weyl–Marchaud fractional derivative of a vector valued fractal interpolation function with function contractivity factors
    T. M. C. Priyanka
    A. Agathiyan
    A. Gowrisankar
    The Journal of Analysis, 2023, 31 : 657 - 689
  • [38] THE PROPERTIES OF FRACTIONAL ORDER CALCULUS OF FRACTAL INTERPOLATION FUNCTION OF BROKEN LINE SEGMENTS
    Pan, Xuezai
    Xu, Rongfei
    Shang, Xudong
    Wang, Minggang
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (03)
  • [39] MULTIVARIATE AFFINE FRACTAL INTERPOLATION
    Navascues, M. A.
    Katiyar, S. K.
    Chand, A. K. B.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)
  • [40] Linear fractal shape interpolation
    Burch, B
    Hart, JC
    GRAPHICS INTERFACE '97 - PROCEEDINGS, 1997, : 155 - 162