Zipper quintic fractal interpolation function for curve fitting

被引:0
作者
Department of Mathematics, Chandigarh University, NH-05, Ludhiana – Chandigarh State Hwy, Gharuan, Punjab, Mohali [1 ]
140413, India
机构
[1] Department of Mathematics, Chandigarh University, NH-05, Ludhiana – Chandigarh State Hwy, Gharuan, Punjab, Mohali
来源
Int. J. Comput. Sci. Math. | 2024年 / 2卷 / 118-131期
关键词
IFS; iterated function system; positivity; rational quintic fractal interpolation function; RQFIF; ZFIF; zipper; zipper fractal interpolation function;
D O I
10.1504/IJCSM.2024.140889
中图分类号
学科分类号
摘要
In this paper, we introduce a class of novel C2 -zipper rational quintic fractal interpolation functions (Zipper-RQFIF) with variable scalings in the form of a rational type that has a quintic polynomial in the numerator and a quadratic polynomial in the denominator with three shape control parameters. We restrict the scaling functions and shape control parameters so that the proposed Zipper-RQFIF is positive when the given dataset is positive. Using this sufficient condition, some numerical examples of positive Zipper-RQFIF are presented to support our theory. This paper approaches the zipper rational quintic fractal interpolation problem as a generalisation of both quintic fractal and affine zipper fractal interpolants, which show more versatility and flexibility than classical and fractal interpolation functions (FIFs). © 2024 Inderscience Enterprises Ltd.
引用
收藏
页码:118 / 131
页数:13
相关论文
共 50 条
  • [21] FOURIER SERIES REPRESENTATION OF FRACTAL INTERPOLATION FUNCTION
    Pan, Xuezai
    Wang, Minggang
    Shang, Xudong
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (04)
  • [22] Note on fractal interpolation function with variable parameters
    Attia, Najmeddine
    Moulahi, Taoufik
    Amami, Rim
    Saidi, Neji
    AIMS MATHEMATICS, 2024, 9 (02): : 2584 - 2601
  • [23] A C2-continuous rational quintic interpolation scheme for curve data with shape control
    Hussain, Malik Zawwar
    Hussain, Maria
    Yameen, Zahra
    JOURNAL OF THE NATIONAL SCIENCE FOUNDATION OF SRI LANKA, 2018, 46 (03): : 341 - 354
  • [24] Graph-directed random fractal interpolation function
    Somogyi, Ildiko
    Soos, Anna
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (02): : 247 - 255
  • [25] A constructive approach to cubic Hermite Fractal Interpolation Function and its constrained aspects
    Chand, A. K. B.
    Viswanathan, P.
    BIT NUMERICAL MATHEMATICS, 2013, 53 (04) : 841 - 865
  • [26] A constructive approach to cubic Hermite Fractal Interpolation Function and its constrained aspects
    A. K. B. Chand
    P. Viswanathan
    BIT Numerical Mathematics, 2013, 53 : 841 - 865
  • [27] Approximation using hidden variable fractal interpolation function
    Chand, Arya K. B.
    Katiyar, Saurabh K.
    Viswanathanl, Puthan V.
    JOURNAL OF FRACTAL GEOMETRY, 2015, 2 (01) : 81 - 114
  • [28] On linear transformation of generalized affine fractal interpolation function
    Attia, Najmeddine
    Amami, Rim
    AIMS MATHEMATICS, 2024, 9 (07): : 16848 - 16862
  • [29] Generalized zipper fractal approximation and parameter identification problems
    Vijay
    Vijender, N.
    Chand, A. K. B.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04)
  • [30] Generalized zipper fractal approximation and parameter identification problems
    N. Vijay
    A. K. B. Vijender
    Computational and Applied Mathematics, 2022, 41