Zipper quintic fractal interpolation function for curve fitting

被引:0
作者
Department of Mathematics, Chandigarh University, NH-05, Ludhiana – Chandigarh State Hwy, Gharuan, Punjab, Mohali [1 ]
140413, India
机构
[1] Department of Mathematics, Chandigarh University, NH-05, Ludhiana – Chandigarh State Hwy, Gharuan, Punjab, Mohali
来源
Int. J. Comput. Sci. Math. | 2024年 / 2卷 / 118-131期
关键词
IFS; iterated function system; positivity; rational quintic fractal interpolation function; RQFIF; ZFIF; zipper; zipper fractal interpolation function;
D O I
10.1504/IJCSM.2024.140889
中图分类号
学科分类号
摘要
In this paper, we introduce a class of novel C2 -zipper rational quintic fractal interpolation functions (Zipper-RQFIF) with variable scalings in the form of a rational type that has a quintic polynomial in the numerator and a quadratic polynomial in the denominator with three shape control parameters. We restrict the scaling functions and shape control parameters so that the proposed Zipper-RQFIF is positive when the given dataset is positive. Using this sufficient condition, some numerical examples of positive Zipper-RQFIF are presented to support our theory. This paper approaches the zipper rational quintic fractal interpolation problem as a generalisation of both quintic fractal and affine zipper fractal interpolants, which show more versatility and flexibility than classical and fractal interpolation functions (FIFs). © 2024 Inderscience Enterprises Ltd.
引用
收藏
页码:118 / 131
页数:13
相关论文
共 50 条
  • [1] Zipper quintic fractal interpolation function for curve fitting
    Sneha
    Katiyar, Kuldip
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2024, 20 (02)
  • [2] Zipper rational fractal interpolation functions
    Pasupathi, R.
    Vijay
    Chand, A. K. B.
    Upadhye, N. S.
    JOURNAL OF ANALYSIS, 2024, 32 (06) : 3197 - 3226
  • [3] Quintic Hermite Fractal Interpolation in a Strip: Preserving Copositivity
    Chand, A. K. B.
    Katiyar, S. K.
    MATHEMATICAL ANALYSIS AND ITS APPLICATIONS, 2015, 143 : 463 - 475
  • [4] Affine zipper fractal interpolation functions
    Chand, A. K. B.
    Vijender, N.
    Viswanathan, P.
    Tetenov, A., V
    BIT NUMERICAL MATHEMATICS, 2020, 60 (02) : 319 - 344
  • [5] Affine zipper fractal interpolation functions
    A. K. B. Chand
    N. Vijender
    P. Viswanathan
    A. V. Tetenov
    BIT Numerical Mathematics, 2020, 60 : 319 - 344
  • [6] A new type of zipper fractal interpolation surfaces and associated bivariate zipper fractal operator
    Garg, Sneha
    Katiyar, Kuldip
    JOURNAL OF ANALYSIS, 2023, 31 (04) : 3021 - 3043
  • [7] A new type of zipper fractal interpolation surfaces and associated bivariate zipper fractal operator
    Sneha Garg
    Kuldip Katiyar
    The Journal of Analysis, 2023, 31 (4) : 3021 - 3043
  • [8] Positivity-Preserving Rational Cubic Fractal Interpolation Function Together with Its Zipper Form
    Sharma, Shamli
    Katiyar, Kuldip
    Sudhamsu, Gadug
    Wratch, Manjinder Kaur
    Salgotra, Rohit
    AXIOMS, 2024, 13 (09)
  • [9] Contractive Multivariate Zipper Fractal Interpolation Functions
    Miculescu, Radu
    Pasupathi, R.
    RESULTS IN MATHEMATICS, 2024, 79 (04)
  • [10] C1-Positivity preserving Bi-quintic blended rational quartic zipper fractal interpolation surfaces
    Vijay
    Chand, A. K. B.
    CHAOS SOLITONS & FRACTALS, 2024, 188