We demonstrate that a metal-insulator phase transition can be electrothermally actuated in the correlated complex oxide SmNiO3 (SNO) above room temperature from current-voltage measurements on thin film two-terminal devices. We simulate the internal temperature of SmNiO3 as a function of applied dc power by a Joule heating mechanism with substrate/electrode dissipation and find good agreement with experiment and device scaling. The results are relevant towards integrating correlated oxide phase transition functionality into semiconductor electronic/optoelectronic platforms. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729490]