Large aperture solar concentration using Fresnel lens arrays and multibeam confocal optical paths on a Stirling engine

被引:1
作者
Zhao, Weisheng [1 ]
Tang, Ping [1 ]
Wang, Shihao [1 ]
Gao, Longyu [1 ]
Hu, Zhanwei [2 ,3 ,4 ]
Huang, Zongbo [2 ,4 ]
He, Xiu [3 ,4 ]
Song, Jifeng [5 ]
机构
[1] North China Elect Power Univ, Sch Renewable Energy, Beijing 102206, Peoples R China
[2] State Key Lab Aerodynam, Mianyang 621000, Sichuan, Peoples R China
[3] Anti Deicing Key Lab China Aerodynam Res & Dev Ctr, Mianyang 621000, Sichuan, Peoples R China
[4] Low Speed Aerodynam Inst, China Aerodynam Res & Dev Ctr CARDC, Mianyang 621000, Sichuan, Peoples R China
[5] North China Elect Power Univ, Inst Energy Power Innovat, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
Fresnel lens; Array; Large equivalent aperture; Ultra-white silver mirror; DISH TECHNOLOGIES; POWER; SYSTEMS; PERFORMANCE; DESIGN; OPTIMIZATION; PLANTS;
D O I
10.1016/j.solener.2024.113160
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
High-concentration solar power systems, such as dish Stirling engine systems, typically necessitate the complex assembly of multiple parabolic mirror segments for the concentrator. An intriguing alternative involves utilizing an array of lightweight, easily manufactured Fresnel lenses to achieve a large effective aperture. In this study, we developed a confocal system that utilizes a large Fresnel lens array, successfully driving a Stirling engine. Experiments demonstrated that while redirecting the high-concentration solar flux flow using mirrors was not feasible, it was possible to alter the direction of the low-concentration solar flux flow. This adjustment facilitated the successful confocal arrangement of a four-beam system, effectively quadrupling the aperture of the concentrator. This approach presents a novel method for realizing large-aperture concentrators through the confocal configuration of a Fresnel lens array.
引用
收藏
页数:8
相关论文
共 30 条
[1]   Thermal models for analysis of performance of Stirling engine: A review [J].
Ahmadi, Mohammad H. ;
Ahmadi, Mohammad-Ali ;
Pourfayaz, Fathollah .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 68 :168-184
[2]   Commercial parabolic trough CSP plants: Research trends and technological advancements [J].
Awan, Ahmed Bilal ;
Khan, M. N. ;
Zubair, Muhammad ;
Bellos, Evangelos .
SOLAR ENERGY, 2020, 211 :1422-1458
[3]   Design and comparative analysis of photovoltaic and parabolic trough based CSP plants [J].
Awan, Ahmed Bilal ;
Zubair, Muhammad ;
Praveen, R. P. ;
Bhatti, Abdul Rauf .
SOLAR ENERGY, 2019, 183 :551-565
[4]   Study on design and performance enhancement of Fresnel lens solar concentrator [J].
Bachhav, Chetan Y. ;
Sonawwanay, Puskaraj D. .
MATERIALS TODAY-PROCEEDINGS, 2022, 56 :2873-2879
[5]   A review of studies on central receiver solar thermal power plants [J].
Behar, Omar ;
Khellaf, Abdallah ;
Mohammedi, Kamal .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 23 :12-39
[6]   Concentrated solar power technology in India: A review [J].
Bijarniya, Jay Prakash ;
Sudhakar, K. ;
Baredar, Prashant .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 63 :593-603
[7]   Multi-criteria decision aid to assess concentrated solar thermal technologies [J].
Cavallaro, Fausto .
RENEWABLE ENERGY, 2009, 34 (07) :1678-1685
[8]   Numerical study of the pressure drop phenomena in wound woven wire matrix of a Stirling regenerator [J].
Costa, S. C. ;
Barrutia, Harritz ;
Ander Esnaola, Jon ;
Tutar, Mustafa .
ENERGY CONVERSION AND MANAGEMENT, 2013, 67 :57-65
[9]   Dish systems for CSP [J].
Coventry, Joe ;
Andraka, Charles .
SOLAR ENERGY, 2017, 152 :140-170
[10]   Mainstreaming commercial CSP systems: A technology review [J].
Fernandez, Angel G. ;
Gomez-Vidal, Judith ;
Oro, Eduard ;
Kruizenga, Alan ;
Sole, Aran ;
Cabeza, Luisa F. .
RENEWABLE ENERGY, 2019, 140 :152-176