共 50 条
Seismic radial anisotropy in southeastern Tibetan Plateau and its for evolution
被引:0
|作者:
Hu, Shaoqian
[1
]
Yao, Huajian
[2
,3
,4
]
Feng, Jikun
[2
,3
]
Huang, Hui
[5
]
Liu, Qiyuan
[6
]
van der Hilst, Robert D.
[7
]
机构:
[1] China Univ Geosci, Sch Geophys & Geomat, Hubei Subsurface Multiscale Imaging Key Lab, Wuhan 430074, Peoples R China
[2] Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Mengcheng Natl Geophys Observ, Mengcheng 233500, Anhui, Peoples R China
[4] CAS Ctr Excellence Comparat Planetol, Hefei, Peoples R China
[5] CGG, Houston, TX 77072 USA
[6] China Earthquake Adm, Inst Geol, State Key Lab Earthquake Dynam, Beijing 100029, Peoples R China
[7] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
基金:
中国国家自然科学基金;
国家重点研发计划;
关键词:
Southeastern Tibetan Plateau;
Seismic radial anisotropy;
Shear wave velocity;
Crustal deformation;
Emeishan Large Igneous Province;
LARGE IGNEOUS PROVINCE;
WAVE ARRAY TOMOGRAPHY;
SE TIBET;
CRUSTAL DEFORMATION;
2-STATION ANALYSIS;
WESTERN SICHUAN;
EASTERN MARGIN;
CHINA;
NOISE;
EARTHQUAKE;
D O I:
10.1016/j.epsl.2024.119122
中图分类号:
P3 [地球物理学];
P59 [地球化学];
学科分类号:
0708 ;
070902 ;
摘要:
The southeastern Tibetan Plateau exhibits intricate crustal tectonics, encompassing recent seismic megathrust events. Previous research suggested the presence of north-south-oriented channelized viscous flow within the crust. However, recent investigations have unveiled a notable northeast-southwest-oriented geological structure, potentially rigid, intersecting with the presumed crustal channelized flow. Several questions persist regarding the composition of the northeast-southwest-oriented structure, the continuity of crustal channelized flow, and the interplay between them. In this study, dispersion data from a dense seismic array are employed to significantly refine regional crustal models for shear wave velocity and radial anisotropy through ambient noise tomography. The resulting high-resolution model further reveals the style of the crustal deformation and supports the interpretation that the northeast-southwest structure, which shows higher velocity and significant negative radial anisotropy, results from mafic material at the base of crust, obstructing the crustal channelized flow. However, the northeast-southwest structure is not as rigid as the Sichuan Block and exhibits depth-dependent deformation. The interpretation proves useful in further understanding regional earthquake focal mechanisms and strain distribution. Additionally, this research identified a region of generalized negative radial anisotropy in the crust of the western Chuan-Dian fragment, suggesting a reduced horizontal channel crustal flow in this area. Drawing upon various geophysical and geological evidence, we present a geodynamic evolution model, proposing a sequence of events: Permian plume activity resulting in mafic material at the base of the crust near Anninghe-Zemuhe fault, northward advancement of the east Himalayan syntaxis inducing crustal compressional stress field, reduced lower crustal channel flow in the western Chuan-Dian fragment leading to the regional east- west extension, and initiation of the Xianshuihe fault causing shift of strain concentration and depth-dependent deformation near the Anninghe-Zemuhe fault. The geodynamic model provides valuable insights into the regional distribution of crustal strain and the underlying mechanisms of large seismic events.
引用
收藏
页数:10
相关论文