An improved biclustering algorithm for gene expression data

被引:0
|
作者
Jin, Sheng-Hua [1 ,2 ,3 ]
Hua, Li [1 ,2 ,3 ]
机构
[1] School of Computer Engineering, Huaiyin Institute of Technology, Huaian,Jiangsu,223003, China
[2] Huaian key Laboratory of the Study and Application of Internet of Things, Huaian,Jiangsu,223003, China
[3] Jiangsu “Internet of Things” Mobile Internet Technology Engineering laboratory, Huaian,Jiangsu,223003, China
来源
关键词
Random processes - Cluster computing - Clustering algorithms - Gene expression - Efficiency;
D O I
暂无
中图分类号
学科分类号
摘要
Cheng-Church (CC) biclustering algorithm is the popular algorithm for the gene expression data mining at present. Only find one biclustering can be found at one time and the biclustering that overlap each other can hardly be found when using this algorithm. This article puts forward a modified algorithm for the gene expression data mining that uses the middle biclustering result to conduct the randomization process, digging up more eligible biclustering data. It also raised a parallel computing method that uses the multi-core processor or cluster environment to improve efficiency. It is proved by experimental verification that the modified algorithm enhances the precision and efficiency of the gene expression data mining to a certain degree. © Jin and Hua.
引用
收藏
页码:1141 / 1144
相关论文
共 50 条
  • [31] Biclustering of Linear Patterns In Gene Expression Data
    Gao, Qinghui
    Ho, Christine
    Jia, Yingmin
    Li, Jingyi Jessica
    Huang, Haiyan
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (06) : 619 - 631
  • [32] An evolutionary approach for biclustering of gene expression data
    Sheta, Walaa
    Hany, Maha
    Mahdi, Shereef
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2010, 2 (06) : 413 - 421
  • [33] Rough overlapping biclustering of gene expression data
    Wang, Ruizhi
    Miao, Duoqian
    Li, Gang
    Zhang, Hongyun
    PROCEEDINGS OF THE 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, VOLS I AND II, 2007, : 828 - 834
  • [34] An improved biclustering method for analyzing gene expression profiles
    Yang, J
    Wang, HX
    Wang, W
    Yu, PS
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2005, 14 (05) : 771 - 789
  • [35] Biclustering gene expression data in the presence of noise
    Abdullah, A
    Hussain, A
    ARTIFICIAL NEURAL NETWORKS: BIOLOGICAL INSPIRATIONS - ICANN 2005, PT 1, PROCEEDINGS, 2005, 3696 : 611 - 616
  • [36] An EA framework for biclustering of gene expression data
    Bleuler, S
    Preli, A
    Zitzler, E
    CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 166 - 173
  • [37] Biclustering of gene expression data by simulated annealing
    Chakraborty, Anupam
    EIGHTH INTERNATIONAL CONFERENCE ON HIGH-PERFORMANCE COMPUTING IN ASIA-PACIFIC REGION, PROCEEDINGS, 2005, : 627 - 632
  • [38] On Evolutionary Algorithms for Biclustering of Gene Expression Data
    Carballido Jessica, A.
    Gallo Cristian, A.
    Dussaut Julieta, S.
    Ignacio, Ponzoni
    CURRENT BIOINFORMATICS, 2015, 10 (03) : 259 - 267
  • [39] Evolutionary fuzzy biclustering of gene expression data
    Mitra, Sushmita
    Banka, Haider
    Paik, Jiaul Hoque
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS, 2007, 4481 : 284 - +
  • [40] Improved biclustering on expression data through overlapping control
    Pontes, Beatriz
    Divina, Federico
    Giraldez, Raul
    Aguilar-Ruiz, Jesus S.
    INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2009, 2 (03) : 477 - 493