Comparison of genetic algorithms for experimental multi-objective optimization on the example of medium design for cyanobacteria

被引:25
作者
Havel, Jan [1 ]
Link, Hannes [1 ]
Hofinger, Michael [1 ]
Franco-Lara, Ezequiel [1 ,2 ]
Weuster-Botz, Dirk [1 ]
机构
[1] Lehrstuhl für Bioverfahrenstechnik, Technische Universität München, Garching
[2] Institut für Bioverfahrenstechnik, Technische Universität Braunschweig, 38106 Braunschweig
关键词
Asymmetric synthesis; Bubble column; Micro-reactor; Phototrophic microorganisms; Synechococcus PCC 7942;
D O I
10.1002/biot.200500052
中图分类号
学科分类号
摘要
In this work, two different genetic algorithms were applied to improve culture media composition for the autotrophic cyanobacteria Synechococcus PCC 7942. Biomass yield and conversion of the asymmetric reduction of 2',3',4',5',6'-pentafluoroacetophenone were considered as simultaneous objectives, resulting in a multi-objective optimization problem. Even when similar performances of both algorithms were observed, it could be shown that a novel strength pareto approach was able to achieve remarkable results with a reduced number of experiments (160 instead of 320). Handling a high number of media components (13), their concentrations were adjusted, delivering high improvements in comparison to the standard BG 11 culture media. The quality of the Synechococcus biocatalyst could be increased up to fivefold compared to the initial state of the optimization. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:549 / 555
页数:6
相关论文
共 20 条
[1]  
Milavec P., Podgornik A., Stravs R., Koloini T., Effect of experimental error on the efficiency of different optimization methods for bioprocess media optimization, Bioproc. Biosyst. Eng., 25, pp. 69-78, (2002)
[2]  
Weuster-Botz D., Experimental design for fermentation media development: statistical design or global random search?, J Biosci. Bioeng., 90, pp. 473-483, (2000)
[3]  
Rechenberg I., Optimierung technischer Systeme nach Prinzipien der biologischen Evolution, (1973)
[4]  
Holland H.J., Adaption in Natural and Artificial Systems, an introductory analysis with application to biology, control and artificial intelligence, (1975)
[5]  
Schaffer J.D., Multi-objective optimization with vector evaluated genetic algorithms, Proceedings of the 1st International Conference on Genetic Algorithms, pp. 93-100, (1985)
[6]  
Deb K., Agrawal S., Pratap A., Meyarivan T., A fast elitist nondominated sorting genetic algorithm for multi-objective optimization: NSGA-II, Proceedings of the Parallel Problem Solving from Nature VI, pp. 849-858, (2000)
[7]  
Zitzler E., Thiele L., Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach, IEEE Transact. Evolut. Comput., 3, pp. 257-271, (1999)
[8]  
Pulz O., Gross W., Valuable products from biotechnology of microalgae, Appl. Microbiol. Biotechnol., 65, pp. 635-648, (2004)
[9]  
Barton J.W., Kuritz T., O'Connor L.E., Ma C.Y., Maskarinec M.P., Et al., Reductive transformation of methyl parathion by the cyanobacterium Anabaena sp. strain PCC7120, Appl. Microbiol. Biotechnol., 65, pp. 330-335, (2004)
[10]  
Shimoda K., Kubota N., Hamada H., Kajib M., Hirata T., Asymmetric reduction of enones with Synechococcus sp PCC 7942, Tetrahedron-Asymmetr, 15, pp. 1677-1679, (2004)