Intra-domain self generalization network for intelligent fault diagnosis of bearings under unseen working conditions

被引:0
|
作者
Huang, Kai [1 ]
Ren, Zhijun [1 ,2 ]
Zhu, Linbo [3 ]
Lin, Tantao [1 ]
Zhu, Yongsheng [1 ]
Zeng, Li [4 ]
Wan, Jin [4 ]
机构
[1] Xi An Jiao Tong Univ, Key Lab Educ, Minist Modern Design & Rotor Bearing Syst, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Xian, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Xian, Peoples R China
[4] CRRC Xian YongeJieTong Elect Co Ltd, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Single domain generalization; Multi-scale convolution; Adversarial training; Unseen working conditions;
D O I
10.1016/j.aei.2024.102997
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, domain generalization fault diagnosis methods have effectively addressed the challenges of bearing fault diagnosis under unseen working conditions. Most existing approaches rely on training across multiple source domains to learn domain-invariant representations. However, collecting comprehensive fault monitoring data across various working conditions is a daunting task. This severely limits the practical application of existing methods. Faced with the common scenario where available data originates from a single working condition, this paper proposes an intra-domain adversarial network (IDAN) for bearing fault diagnosis based on self generalization. Firstly, leveraging multi-scale branches and an improved adversarial learning mechanism, a perspective sharing strategy is introduced to ensure the extraction of generalized fault representations surpassing the constraints of perspectives. In this process, semantic diagnostic knowledge inherent in multi-scale features is refined through inter-scale confusion. Additionally, a collaborative decision strategy is designed to achieve the ultimate optimization of decision boundaries. By reinforcing and aligning the classification boundaries of different branches, the model's generalization performance is further enhanced. Finally, extensive generalization diagnostic experiments conducted on three datasets validate the effectiveness of the proposed approach.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions
    Li, Qi
    Chen, Liang
    Kong, Lin
    Wang, Dong
    Xia, Min
    Shen, Changqing
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 234
  • [12] A reliable feature-assisted contrastive generalization net for intelligent fault diagnosis under unseen machines and working conditions
    Shi, Zhen
    Chen, Jinglong
    Zhang, Xinwei
    Zi, Yanyang
    Li, Chen
    Chen, Jin
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 188
  • [13] Intelligent Fault Diagnosis of Bearings under Variable Working Conditions and Small Samples with Generative Adversarial Network
    Xie, Shushuai
    Cheng, Wei
    Nie, Zelin
    Chen, Xuefeng
    2022 PROGNOSTICS AND HEALTH MANAGEMENT CONFERENCE, PHM-LONDON 2022, 2022, : 162 - 168
  • [14] Domain Adaptation for Intelligent Fault Diagnosis under Different Working Conditions
    Li, Weigui
    Yuan, Zhuqing
    Sun, Wenyu
    Liu, Yongpan
    2020 8TH ASIA CONFERENCE ON MECHANICAL AND MATERIALS ENGINEERING (ACMME 2020), 2020, 319
  • [15] Domain-invariant feature exploration for intelligent fault diagnosis under unseen and time-varying working conditions
    Hua, Zehui
    Shi, Juanjuan
    Dumond, Patrick
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 224
  • [16] An Intelligent Fault Diagnosis Method Based on Domain Adaptation and Its Application for Bearings Under Polytropic Working Conditions
    Lei, Zihao
    Wen, Guangrui
    Dong, Shuzhi
    Huang, Xin
    Zhou, Haoxuan
    Zhang, Zhifen
    Chen, Xuefeng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [17] Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions
    An, Yiyao
    Zhang, Ke
    Chai, Yi
    Liu, Qie
    Huang, Xinghua
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 212
  • [18] Relationship Transfer Domain Generalization Network for Rotating Machinery Fault Diagnosis Under Different Working Conditions
    Qian, Quan
    Zhou, Jianghong
    Qin, Yi
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (09) : 9898 - 9908
  • [19] An Intelligent Fault Diagnosis Method based on STFT and Convolutional Neural Network for Bearings Under Variable Working Conditions
    Zhong, Dawei
    Guo, Wei
    He, Da
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [20] Intelligent Fault Diagnosis for Bearings of Industrial Robot Joints Under Varying Working Conditions Based on Deep Adversarial Domain Adaptation
    Xia, Bingjie
    Wang, Kai
    Xu, Aidong
    Zeng, Peng
    Yang, Nan
    Li, Bangyu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71