Recent progress of scalable perovskite solar cells and modules

被引:8
作者
Wang F. [1 ,4 ]
Han Y. [2 ]
Duan D. [1 ]
Ge C. [1 ]
Hu H. [1 ]
Li G. [2 ,3 ]
机构
[1] Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen
[2] Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon
[3] The Hong Kong Polytechnic University Shenzhen Research Institute, Guangdong, Shenzhen
[4] State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan
来源
Energy Reviews | 2022年 / 1卷 / 02期
基金
中国国家自然科学基金;
关键词
Large-scale device; Modules; Perovskites; Photovoltaics;
D O I
10.1016/j.enrev.2022.100010
中图分类号
学科分类号
摘要
The rapid development of perovskite solar cells (PSCs) over the past decade makes it the most promising next generation photovoltaic technology. Splendid progress in efficiency and stability has been demonstrated in laboratory level, while endeavours are extremely required to enable successful transfer of the printable PSC technology to industry scale toward commercialization. In this work, recent progresses on upscaling of PSCs are systematically reviewed. Starting with the traditional PSC structure, we have analyzed the specially designed configuration for perovskite solar modules (PSMs). The comprehensive overview and assessment are provided for the technologies engineering in large-scale preparation, including both solution processing and vapor-phase deposition methods. Considering the promoting effect of material engineering to scale up PSMs, the application of additive engineering, solvent engineering and interface engineering on the stability and efficiency of PSMs is systematacially discussed. Moreover, the effect of current packaging technology of PSMs on device lifetime and environmental friendliness is emphasized. At last, we propose the prospects and challenges of PSMs commercialization in the future to meet the requirements for next generation photovoltaic industry. © 2022 The Authors
引用
收藏
相关论文
共 143 条
  • [61] Saliba M., Matsui T., Seo J.-Y., Domanski K., Correa-Baena J.-P., Nazeeruddin M.K., Zakeeruddin S.M., Tress W., Abate A., Hagfeldt A., Gratzel M., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Environ. Sci., 9, pp. 1989-1997, (2016)
  • [62] Liu Y., Zhang Y., Zhu X., Feng J., Spanopoulos I., Ke W., He Y., Ren X., Yang Z., Xiao F., Zhao K., Kanatzidis M., Liu S.F., Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging, Adv. Mater., 33, (2021)
  • [63] Wu Y., Wang Q., Chen Y., Qiu W., Peng Q., Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically, Energy Environ. Sci., (2022)
  • [64] Aristidou N., Sanchez-Molina I., Chotchuangchutchaval T., Brown M., Martinez L., Rath T., Haque S.A., The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers, Angew. Chem., 127, pp. 8326-8330, (2015)
  • [65] Lee S.-W., Kim S., Bae S., Cho K., Chung T., Mundt L.E., Lee S., Park S., Park H., Schubert M.C., Glunz S.W., Ko Y., Jun Y., Kang Y., Lee H.-S., Kim D., UV degradation and recovery of perovskite solar cells, Sci. Rep., 6, (2016)
  • [66] Eperon G.E., Paterno G.M., Sutton R.J., Zampetti A., Haghighirad A.A., Cacialli F., Snaith H.J., Inorganic caesium lead iodide perovskite solar cells, J. Mater. Chem. A., 3, pp. 19688-19695, (2015)
  • [67] Kulbak M., Cahen D., Hodes G., How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells, J. Phys. Chem. Lett., 6, pp. 2452-2456, (2015)
  • [68] Sutton R.J., Eperon G.E., Miranda L., Parrott E.S., Kamino B.A., Patel J.B., Horantner M.T., Johnston M.B., Haghighirad A.A., Moore D.T., Snaith H.J., Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells, Adv. Energy Mater., 6, (2016)
  • [69] Yin G., Zhao H., Jiang H., Yuan S., Niu T., Zhao K., Liu Z., Liu S.F., Precursor engineering for all-inorganic CsPbI<sub>2</sub>Br perovskite solar cells with 14.78% efficiency, Adv. Funct. Mater., 28, (2018)
  • [70] Han Y., Zhao H., Duan C., Yang S., Yang Z., Liu Z., Liu S.F., Controlled n-doping in air-stable CsPbI 2 Br perovskite solar cells with a record efficiency of 16.79, Adv. Funct. Mater., 30, (2020)