Benzamide-based dopant-free small-molecule hole transport materials for inverted perovskite solar cells

被引:0
作者
Xu, Yuanyuan [1 ]
Chen, Yu [1 ]
Xue, Song [1 ]
机构
[1] Tianjin Univ Technol, Sch Mat Sci & Engn, Sch Chem & Chem Engn, Tianjin Key Lab Organ Solar Cells & Photochem Conv, Tianjin 300384, Peoples R China
关键词
Solar energy; Hole-transport materials; Organic compounds; Imide; inverted perovskite solar cells; LOW-COST; EFFICIENT;
D O I
10.1016/j.dyepig.2024.112589
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Linear and star-shaped derivatives were synthesized through condensation reactions between spiro-types arylamines and terephthaloyl dichloride (X17), 2,3,5,6-tetrafluoroterephthaloyl dichloride (X18), benzene-1,3,5-tricarbonyl trichloride (X19). Inverted planar perovskite solar cells (PSCs) were fabricated by dopant-free X17, X18 and X19 as hole-transport materials (HTMs). They exhibit good charge mobility and suitable the highest occupied molecular orbital (HOMO)/the lowest unoccupied molecular orbital (LUMO) energy levels. The imide-based molecules have been shown to be effective for defect passivation in inverted PSCs. The photoelectric conversion efficiencies (PCEs) are increased in an order of X19 (18.84 %) > X18(17.15 %) > X17(15.03 %), indicating the star-shaped derivatives with multi-imides groups and a large conjugated central core contribute to high performance. Their hole mobility values are 3.63 x 10(-4) cm(2) V--(1) S--(1) (X17), 3.74 x 10(-4) cm(2) V--(1) S--(1) (X18) and 4.12 x 10(-4) cm(2) V--(1) S--(1) (X19). Atomic force microscopy (AFM) results showed smooth substrate with root-mean-square (RMS) roughness being 1.39 nm, 1.63 nm and 1.21 nm for X17, X18, and X19, respectively. Meanwhile, the HTMs exhibit high glass-transition temperatures (T-g) of 138 degrees C for X17, 166 degrees C for X18, and 145 degrees C for X19. The unencapsulated devices stability based on X17, X18, and X19 retained the initial efficiency as follows: 73 % for X19, 48 % for X18, and 37 % for X17 after 30 days of aging in a nitrogen atmosphere. In comparison, device incorporating poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA) showed an efficiency of 18.58 %, and retained less than 65 % of the initial efficiency under the same condition.
引用
收藏
页数:8
相关论文
共 50 条
[31]   Selenium-containing D-A-D-type dopant-free hole transport materials for perovskite solar cells [J].
Fu, Yajie ;
Sun, Yapeng ;
Tang, Hao ;
Wang, Lingyun ;
Yu, Huangzhong ;
Cao, Derong .
DYES AND PIGMENTS, 2021, 191
[32]   Dopant-free dipole-type hole transport materials with alkali cation for enhanced stability in perovskite solar cells [J].
Kim, Hyunji ;
Hashimoto, Maki ;
Ohkura, Yuya ;
Ito, Toshiaki ;
Takahashi, Hideaki ;
Sato, Hiroshi ;
Kim, Jinyoung ;
Shibayama, Naoyuki ;
Miyasaka, Tsutomu ;
Kim, Gyu Min .
CHEMICAL ENGINEERING JOURNAL, 2025, 505
[33]   Dopant-Free Mexylaminotriazine Molecular Glass Hole Transport Layer for Perovskite Solar Cells [J].
Wang, LiangLe ;
Shahiduzzaman, Md. ;
Muslih, E. Y. ;
Nakano, Masahiro ;
Karakawa, Makoto ;
Tomita, Koji ;
Lebel, Olivier ;
Nunzi, Jean Michel ;
Taima, Tetsuya .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (11) :12232-12242
[34]   Fluorinating Dopant-Free Small-Molecule Hole-Transport Material to Enhance the Photovoltaic Property [J].
Wang, Yi Kai ;
Ma, Hui ;
Chen, Qiaoyun ;
Sun, Quan ;
Liu, Zhengxu ;
Sun, Zhe ;
Jia, Xuguang ;
Zhu, Yuanyuan ;
Zhang, Shuai ;
Zhang, Jing ;
Yuan, Ningyi ;
Ding, Jianning ;
Zhou, Yi ;
Song, Bo ;
Li, Yongfang .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (06) :7705-7713
[35]   Breakthrough in the Application of a Small Molecule as Dopant-Free Hole-Transport Material in p-i-n Perovskite Solar Cells [J].
Chen, Jiawei ;
Zhu, Xueshuai ;
Zhang, Jing ;
Wei, Lubin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (14) :6147-6152
[36]   Dopant-Free Hole-Transporting Materials for Stable and Efficient Perovskite Solar Cells [J].
Paek, Sanghyun ;
Qin, Peng ;
Lee, Yonghui ;
Cho, Kyung Taek ;
Gao, Peng ;
Grancini, Giulia ;
Oveisi, Emad ;
Gratia, Paul ;
Rakstys, Kasparas ;
Al-Muhtaseb, Shaheen A. ;
Ludwig, Christian ;
Ko, Jaejung ;
Nazeeruddin, Mohammad Khaja .
ADVANCED MATERIALS, 2017, 29 (35)
[37]   Readily synthesized dopant-free hole transport materials with phenol core for stabilized mixed perovskite solar cells [J].
Xue, Yuyuan ;
Wu, Ying ;
Li, Yuan .
JOURNAL OF POWER SOURCES, 2017, 344 :160-169
[38]   Spiro-Bifluorene-Cored Dopant-Free Conjugated Polymeric Hole-Transporting Materials Containing Passivation Parts for Inverted Perovskite Solar Cells [J].
Xu, Yuanyuan ;
Chen, Yu ;
Zong, Xueping ;
Luo, Jiangzhou ;
Sun, Zhe ;
Liang, Mao ;
Xue, Song .
ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (16) :21291-21301
[39]   Tailoring Rigid Segments in Dopant-Free Polymeric Hole Transport Materials for Perovskite Quantum Dot Solar Cells [J].
Lee, Dae Hwan ;
Lim, Seyeong ;
Kim, Chanhyeok ;
Lee, Han Uk ;
Chung, Dasol ;
Choi, Yelim ;
Choi, Jongmin ;
Kim, Younghoon ;
Cho, Sung Beom ;
Kim, Hong Il ;
Park, Taiho .
ACS ENERGY LETTERS, 2023, 8 (04) :1839-1847
[40]   Dopant-Free Two-Dimensional Hole Transport Small Molecules Enable Efficient Perovskite Solar Cells [J].
Ji, Xiaofei ;
Zhou, Tong ;
Fu, Qiang ;
Wang, Wenxuan ;
Wu, Ziang ;
Zhang, Mingtao ;
Guo, Xugang ;
Liu, Dongxue ;
Woo, Han Young ;
Liu, Yongsheng .
ADVANCED ENERGY MATERIALS, 2023, 13 (11)