Learning dual updatable memory modules for video anomaly detection

被引:0
|
作者
Zhang, Liang [1 ]
Li, Shifeng [1 ]
Cheng, Yan [1 ]
Luo, Xi [1 ]
Liu, Xiaoru [1 ]
机构
[1] Bohai Univ, Coll Informat Sci & Technol, Jin Shan St, Jinzhou 121007, Peoples R China
基金
中国国家自然科学基金;
关键词
Video anomaly detection; Pseudo anomaly; Memory modules; Updating strategy;
D O I
10.1007/s00530-024-01597-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a novel video anomaly detection method that leverages two updatable memory modules to learn and update prototypical patterns of normal and abnormal data within an autoencoder (AE) framework. To enhance the robustness of the model, we employ a pseudo anomaly synthesizer to generate synthetic anomalies from normal data, and train the AE to minimize the reconstruction loss on pseudo anomalies while maximizing it on normal data. The memory modules are optimized using a feature compactness loss and a separateness loss to refine the representation of details, and skip connections are incorporated to prevent the recording of only the most prototypical patterns. Additionally, a memory loss is proposed to enhance the distinction between the two memory modules, thereby enabling effective anomaly detection. Experimental results demonstrate the efficacy of our approach, underscoring the importance of the two updatable memory modules in achieving state-of-the-art performance in video anomaly detection. Our code is available at https://github.com/SVIL2024/Memup.git.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] A comprehensive review on deep learning-based methods for video anomaly detection
    Nayak, Rashmiranjan
    Pati, Umesh Chandra
    Das, Santos Kumar
    IMAGE AND VISION COMPUTING, 2021, 106
  • [42] Regularity Learning via Explicit Distribution Modeling for Skeletal Video Anomaly Detection
    Yu, Shoubin
    Zhao, Zhongyin
    Fang, Haoshu
    Deng, Andong
    Su, Haisheng
    Wang, Dongliang
    Gan, Weihao
    Lu, Cewu
    Wu, Wei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (08) : 6661 - 6673
  • [43] OBJECT-CENTRIC AND MEMORY-GUIDED NORMALITY RECONSTRUCTION FOR VIDEO ANOMALY DETECTION
    Bergaoui, Khalil
    Naji, Yassine
    Setkov, Aleksandr
    Loesch, Angelique
    Gouiffes, Michele
    Audigier, Romaric
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2691 - 2695
  • [44] Learning Graph Enhanced Spatial-Temporal Coherence for Video Anomaly Detection
    Cheng, Kai
    Liu, Yang
    Zeng, Xinhua
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 314 - 318
  • [45] Learning Spatiotemporal Features With 3DCNN and ConvGRU for Video Anomaly Detection
    Wang, Xin
    Xie, Weixin
    Song, Jiayi
    PROCEEDINGS OF 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2018, : 474 - 479
  • [46] Channel based approach via faster dual prediction network for video anomaly detection
    Li, Hongjun
    Shen, Xulin
    Sun, Xiaohu
    Wang, Yunlong
    Li, Chaobo
    Chen, Junjie
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (33) : 79281 - 79301
  • [47] Convolutional Transformer based Dual Discriminator Generative Adversarial Networks for Video Anomaly Detection
    Feng, Xinyang
    Song, Dongjin
    Chen, Yuncong
    Chen, Zhengzhang
    Ni, Jingchao
    Chen, Haifeng
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 5546 - 5554
  • [48] Video Anomaly Detection in Confined Areas
    Varghese, Emmanu
    Mulerikkal, Jaison
    Mathew, Amitha
    7TH INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATIONS (ICACC-2017), 2017, 115 : 448 - 459
  • [49] Evidential Reasoning for Video Anomaly Detection
    Sun, Che
    Jia, Yunde
    Wu, Yuwei
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 2106 - 2114
  • [50] Toward Video Anomaly Retrieval From Video Anomaly Detection: New Benchmarks and Model
    Wu, Peng
    Liu, Jing
    He, Xiangteng
    Peng, Yuxin
    Wang, Peng
    Zhang, Yanning
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 2213 - 2225