Learning dual updatable memory modules for video anomaly detection

被引:0
|
作者
Zhang, Liang [1 ]
Li, Shifeng [1 ]
Cheng, Yan [1 ]
Luo, Xi [1 ]
Liu, Xiaoru [1 ]
机构
[1] Bohai Univ, Coll Informat Sci & Technol, Jin Shan St, Jinzhou 121007, Peoples R China
基金
中国国家自然科学基金;
关键词
Video anomaly detection; Pseudo anomaly; Memory modules; Updating strategy;
D O I
10.1007/s00530-024-01597-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a novel video anomaly detection method that leverages two updatable memory modules to learn and update prototypical patterns of normal and abnormal data within an autoencoder (AE) framework. To enhance the robustness of the model, we employ a pseudo anomaly synthesizer to generate synthetic anomalies from normal data, and train the AE to minimize the reconstruction loss on pseudo anomalies while maximizing it on normal data. The memory modules are optimized using a feature compactness loss and a separateness loss to refine the representation of details, and skip connections are incorporated to prevent the recording of only the most prototypical patterns. Additionally, a memory loss is proposed to enhance the distinction between the two memory modules, thereby enabling effective anomaly detection. Experimental results demonstrate the efficacy of our approach, underscoring the importance of the two updatable memory modules in achieving state-of-the-art performance in video anomaly detection. Our code is available at https://github.com/SVIL2024/Memup.git.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Collaborative Normality Learning Framework for Weakly Supervised Video Anomaly Detection
    Liu, Yang
    Liu, Jing
    Zhao, Mengyang
    Li, Shuang
    Song, Liang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (05) : 2508 - 2512
  • [32] Video anomaly detection based on frame memory bank and decoupled asymmetric convolutions
    Zhao, Min
    Wang, Chuanxu
    Li, Jiajiong
    Jiang, Zitai
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (05)
  • [33] Learning Causality-inspired Representation Consistency for Video Anomaly Detection
    Liu, Yang
    Xia, Zhaoyang
    Zhao, Mengyang
    Wei, Donglai
    Wang, Yuzheng
    Liu, Siao
    Ju, Bobo
    Fang, Gaoyun
    Liu, Jing
    Song, Liang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 203 - 212
  • [34] Multi-memory video anomaly detection based on scene object distribution
    Hongjun Li
    Jinyi Chen
    Xiaohu Sun
    Chaobo Li
    Junjie Chen
    Multimedia Tools and Applications, 2023, 82 : 35557 - 35583
  • [35] Cloze Test Helps: Effective Video Anomaly Detection via Learning to Complete Video Events
    Yu, Guang
    Wang, Siqi
    Cai, Zhiping
    Zhu, En
    Xu, Chuanfu
    Yin, Jianping
    Kloft, Marius
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 583 - 591
  • [36] Memory-Augmented Spatial-Temporal Consistency Network for Video Anomaly Detection
    Li, Zhangxun
    Zhao, Mengyang
    Zeng, Xinhua
    Wang, Tian
    Pang, Chengxin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VI, 2024, 14430 : 95 - 107
  • [37] Memory-enhanced appearance-motion consistency framework for video anomaly detection
    Ning, Zhiyuan
    Wang, Zile
    Liu, Yang
    Liu, Jing
    Song, Liang
    COMPUTER COMMUNICATIONS, 2024, 216 : 159 - 167
  • [38] A multi-memory-augmented network with a curvy metric method for video anomaly detection
    Li, Hongjun
    Wang, Yunlong
    Wang, Yating
    Chen, Junjie
    NEURAL NETWORKS, 2025, 184
  • [39] Spatiotemporal Masked Autoencoder with Multi-Memory and Skip Connections for Video Anomaly Detection
    Fu, Yan
    Yang, Bao
    Ye, Ou
    ELECTRONICS, 2024, 13 (02)
  • [40] Memory Clustering Autoencoder Method for Human Action Anomaly Detection on Surveillance Camera Video
    Yan, Mingchao
    Xiong, Yonghua
    She, Jinhua
    IEEE SENSORS JOURNAL, 2023, 23 (18) : 20715 - 20728