Learning dual updatable memory modules for video anomaly detection

被引:0
|
作者
Zhang, Liang [1 ]
Li, Shifeng [1 ]
Cheng, Yan [1 ]
Luo, Xi [1 ]
Liu, Xiaoru [1 ]
机构
[1] Bohai Univ, Coll Informat Sci & Technol, Jin Shan St, Jinzhou 121007, Peoples R China
基金
中国国家自然科学基金;
关键词
Video anomaly detection; Pseudo anomaly; Memory modules; Updating strategy;
D O I
10.1007/s00530-024-01597-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a novel video anomaly detection method that leverages two updatable memory modules to learn and update prototypical patterns of normal and abnormal data within an autoencoder (AE) framework. To enhance the robustness of the model, we employ a pseudo anomaly synthesizer to generate synthetic anomalies from normal data, and train the AE to minimize the reconstruction loss on pseudo anomalies while maximizing it on normal data. The memory modules are optimized using a feature compactness loss and a separateness loss to refine the representation of details, and skip connections are incorporated to prevent the recording of only the most prototypical patterns. Additionally, a memory loss is proposed to enhance the distinction between the two memory modules, thereby enabling effective anomaly detection. Experimental results demonstrate the efficacy of our approach, underscoring the importance of the two updatable memory modules in achieving state-of-the-art performance in video anomaly detection. Our code is available at https://github.com/SVIL2024/Memup.git.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Video anomaly detection with both normal and anomaly memory modules
    Zhang, Liang
    Li, Shifeng
    Luo, Xi
    Liu, Xiaoru
    Zhang, Ruixuan
    VISUAL COMPUTER, 2024, : 3003 - 3015
  • [2] Learning a multi-cluster memory prototype for unsupervised video anomaly detection
    Wu, Yuntao
    Zeng, Kun
    Li, Zuoyong
    Peng, Zhonghua
    Chen, Xiaobo
    Hu, Rong
    INFORMATION SCIENCES, 2025, 686
  • [3] Dual-Scale Temporal Dependency Learning for Unsupervised Video Anomaly Detection
    Li, Xu
    Wang, Xue
    Du, Zexing
    Wang, Qing
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT X, 2025, 15040 : 284 - 298
  • [4] An informative dual ForkNet for video anomaly detection
    Li, Hongjun
    Wang, Yunlong
    Wang, Yating
    Chen, Junjie
    NEURAL NETWORKS, 2024, 179
  • [5] Review of Deep Learning-Based Video Anomaly Detection
    Ji G.
    Qi X.
    Wang J.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2024, 37 (02): : 128 - 143
  • [6] Semantic-driven dual consistency learning for weakly supervised video anomaly detection
    Su, Yong
    Tan, Yuyu
    An, Simin
    Xing, Meng
    Feng, Zhiyong
    PATTERN RECOGNITION, 2025, 157
  • [7] Perceptual metric learning for video anomaly detection
    Ramachandra, Bharathkumar
    Jones, Michael
    Vatsavai, Ranga Raju
    MACHINE VISION AND APPLICATIONS, 2021, 32 (03)
  • [8] Normality Learning in Multispace for Video Anomaly Detection
    Zhang, Yu
    Nie, Xiushan
    He, Rundong
    Chen, Meng
    Yin, Yilong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (09) : 3694 - 3706
  • [9] Video anomaly detection guided by clustering learning
    Qiu, Shaoming
    Ye, Jingfeng
    Zhao, Jiancheng
    He, Lei
    Liu, Liangyu
    E, Bicong
    Huang, Xinchen
    PATTERN RECOGNITION, 2024, 153
  • [10] Perceptual metric learning for video anomaly detection
    Bharathkumar Ramachandra
    Michael Jones
    Ranga Raju Vatsavai
    Machine Vision and Applications, 2021, 32