TEACHTEXT: CrossModal text-video retrieval through generalized distillation

被引:0
|
作者
Croitoru, Ioana [1 ,2 ]
Bogolin, Simion-Vlad [1 ,2 ]
Leordeanu, Marius [3 ]
Jin, Hailin [4 ]
Zisserman, Andrew [1 ]
Liu, Yang [1 ,5 ]
Albanie, Samuel [6 ]
机构
[1] Univ Oxford, Visual Geometry Grp, Oxford, England
[2] Romanian Acad, Inst Math, Bucharest, Romania
[3] Univ Politehn Bucuresti, Bucharest, Romania
[4] Adobe Res, San Jose, CA USA
[5] Peking Univ, Wangxuan Inst Comp Technol, Beijing, Peoples R China
[6] Univ Cambridge, Dept Engn, Cambridge, England
基金
英国工程与自然科学研究理事会;
关键词
Text-video retrieval; Distillation; Text embeddings; Video experts;
D O I
10.1016/j.artint.2024.104235
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, considerable progress on the task of text-video retrieval has been achieved by leveraging large-scale pretraining on visual and audio datasets to construct powerful video encoders. By contrast, despite the natural symmetry, the design of effective algorithms for exploiting large-scale language pretraining remains under-explored. In this work, we investigate the design of such algorithms and propose a novel generalized distillation method, TEACHTEXT, which leverages complementary cues from multiple text encoders to provide an enhanced supervisory signal to the retrieval model. TEACHTEXT yields significant gains on a number of video retrieval benchmarks without incurring additional computational overhead during inference and was used to produce the winning entry in the Condensed Movie Challenge at ICCV 2021. We show how TEACHTEXT can be extended to include multiple video modalities, reducing computational cost at inference without compromising performance. Finally, we demonstrate the application of our method to the task of removing noisy descriptions from the training partitions of retrieval datasets to improve performance. Code and data can be found at https://www.robots.ox.ac.uk/similar to vgg/research/teachtext/.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] X-Pool: Cross-Modal Language-Video Attention for Text-Video Retrieval
    Gorti, Satya Krishna
    Vouitsis, Noel
    Ma, Junwei
    Golestan, Keyvan
    Volkovs, Maksims
    Garg, Animesh
    Yu, Guangwei
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 4996 - 5005
  • [32] Fine-grained Cross-modal Alignment Network for Text-Video Retrieval
    Han, Ning
    Chen, Jingjing
    Xiao, Guangyi
    Zhang, Hao
    Zeng, Yawen
    Chen, Hao
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3826 - 3834
  • [33] MGSGA: Multi-grained and Semantic-Guided Alignment for Text-Video Retrieval
    Xiaoyu Wu
    Jiayao Qian
    Lulu Yang
    Neural Processing Letters, 56
  • [34] Adversarial Multi-Grained Embedding Network for Cross-Modal Text-Video Retrieval
    Han, Ning
    Chen, Jingjing
    Zhang, Hao
    Wang, Huanwen
    Chen, Hao
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (02)
  • [35] BiC-Net: Learning Efficient Spatio-temporal Relation for Text-Video Retrieval
    Han, Ning
    Zeng, Yawen
    Shi, Chuhao
    Xiao, Guangyi
    Chen, Hao
    Chen, Jingjing
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (03)
  • [36] VoP: Text-Video Co-operative Prompt Tuning for Cross-Modal Retrieval
    Huang, Siteng
    Gong, Biao
    Pan, Yulin
    Jiang, Jianwen
    Lv, Yiliang
    Li, Yuyuan
    Wang, Donglin
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 6565 - 6574
  • [37] Align and Tell: Boosting Text-Video Retrieval With Local Alignment and Fine-Grained Supervision
    Wang, Xiaohan
    Zhu, Linchao
    Zheng, Zhedong
    Xu, Mingliang
    Yang, Yi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6079 - 6089
  • [38] CMFG: Cross-Model Fine-Grained Feature Interaction for Text-Video Retrieval
    Zhao, Shengwei
    Liu, Yuying
    Du, Shaoyi
    Tian, Zhiqiang
    Qu, Ting
    Xu, Linhai
    MULTIMEDIA MODELING, MMM 2023, PT II, 2023, 13834 : 435 - 445
  • [39] T2VLAD: Global-Local Sequence Alignment for Text-Video Retrieval
    Wang, Xiaohan
    Zhu, Linchao
    Yang, Yi
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5075 - 5084
  • [40] End-to-End Pre-Training With Hierarchical Matching and Momentum Contrast for Text-Video Retrieval
    Shen, Wenxue
    Song, Jingkuan
    Zhu, Xiaosu
    Li, Gongfu
    Shen, Heng Tao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 5017 - 5030