TEACHTEXT: CrossModal text-video retrieval through generalized distillation

被引:0
|
作者
Croitoru, Ioana [1 ,2 ]
Bogolin, Simion-Vlad [1 ,2 ]
Leordeanu, Marius [3 ]
Jin, Hailin [4 ]
Zisserman, Andrew [1 ]
Liu, Yang [1 ,5 ]
Albanie, Samuel [6 ]
机构
[1] Univ Oxford, Visual Geometry Grp, Oxford, England
[2] Romanian Acad, Inst Math, Bucharest, Romania
[3] Univ Politehn Bucuresti, Bucharest, Romania
[4] Adobe Res, San Jose, CA USA
[5] Peking Univ, Wangxuan Inst Comp Technol, Beijing, Peoples R China
[6] Univ Cambridge, Dept Engn, Cambridge, England
基金
英国工程与自然科学研究理事会;
关键词
Text-video retrieval; Distillation; Text embeddings; Video experts;
D O I
10.1016/j.artint.2024.104235
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, considerable progress on the task of text-video retrieval has been achieved by leveraging large-scale pretraining on visual and audio datasets to construct powerful video encoders. By contrast, despite the natural symmetry, the design of effective algorithms for exploiting large-scale language pretraining remains under-explored. In this work, we investigate the design of such algorithms and propose a novel generalized distillation method, TEACHTEXT, which leverages complementary cues from multiple text encoders to provide an enhanced supervisory signal to the retrieval model. TEACHTEXT yields significant gains on a number of video retrieval benchmarks without incurring additional computational overhead during inference and was used to produce the winning entry in the Condensed Movie Challenge at ICCV 2021. We show how TEACHTEXT can be extended to include multiple video modalities, reducing computational cost at inference without compromising performance. Finally, we demonstrate the application of our method to the task of removing noisy descriptions from the training partitions of retrieval datasets to improve performance. Code and data can be found at https://www.robots.ox.ac.uk/similar to vgg/research/teachtext/.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] TEACHTEXT: CrossModal Generalized Distillation for Text-Video Retrieval
    Croitoru, Ioana
    Bogolin, Simion-Vlad
    Leordeanu, Marius
    Jin, Hailin
    Zisserman, Andrew
    Albanie, Samuel
    Liu, Yang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 11563 - 11573
  • [2] Text-guided distillation learning to diversify video embeddings for text-video retrieval
    Lee, Sangmin
    Kim, Hyung-Il
    Ro, Yong Man
    PATTERN RECOGNITION, 2024, 156
  • [3] Text Is MASS: Modeling as Stochastic Embedding for Text-Video Retrieval
    Wang, Jiamian
    Sun, Guohao
    Wang, Pichao
    Liu, Dongfang
    Dianat, Sohail
    Rabbanil, Majid
    Rao, Raghuveer
    Tao, Zhigang
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 16551 - 16560
  • [4] KnowER: Knowledge enhancement for efficient text-video retrieval
    Kou H.
    Yang Y.
    Hua Y.
    Intelligent and Converged Networks, 2023, 4 (02): : 93 - 105
  • [5] UATVR: Uncertainty-Adaptive Text-Video Retrieval
    Fang, Bo
    Wu, Wenhao
    Liu, Chang
    Zhou, Yu
    Song, Yuxin
    Wang, Weiping
    Shu, Xiangbo
    Ji, Xiangyang
    Wang, Jingdong
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 13677 - 13687
  • [6] DiffusionRet: Generative Text-Video Retrieval with Diffusion Model
    Jin, Peng
    Li, Hao
    Cheng, Zesen
    Li, Kehan
    Ji, Xiangyang
    Liu, Chang
    Yuan, Li
    Chen, Jie
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 2470 - 2481
  • [7] Dynamic semantic prototype perception for text-video retrieval
    Zhao, Henghao
    Yan, Rui
    Li, Zechao
    IMAGE AND VISION COMPUTING, 2025, 158
  • [8] CenterCLIP: Token Clustering for Efficient Text-Video Retrieval
    Zhao, Shuai
    Zhu, Linchao
    Wang, Xiaohan
    Yang, Yi
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 970 - 981
  • [9] Prompt Switch: Efficient CLIP Adaptation for Text-Video Retrieval
    Deng, Chaorui
    Chen, Qi
    Qin, Pengda
    Chen, Da
    Wu, Qi
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 15602 - 15612
  • [10] Learning Linguistic Association Towards Efficient Text-Video Retrieval
    Fang, Sheng
    Wang, Shuhui
    Zhuo, Junbao
    Han, Xinzhe
    Huang, Qingming
    COMPUTER VISION, ECCV 2022, PT XXXVI, 2022, 13696 : 254 - 270