Effect of Li amount on properties of KNNLTSBZ lead-free piezoelectric ceramics

被引:0
|
作者
机构
[1] School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, Jiangxi
[2] Kunshan PANT Piezoelectric Technology Corporation Limited, Kunshan 215300, Jiangsu
来源
Li, Y. (lym6329@163.com) | 1600年 / Chinese Ceramic Society卷 / 42期
关键词
Electrical properties; Lead-free piezoceramics; Polymorphic phase transition; Potassium sodium niobate;
D O I
10.7521/j.issn.0454-5648.2014.01.1
中图分类号
学科分类号
摘要
(K0.49Na0.51)1-xLix (Nb0.77Ta0.18Sb0.05)O3- 0.005BaZrO3(x=0.02-0.06, abbreviated KNNLTSBZx) lead-free piezoelectric ceramics were prepared by a conventional solid state reaction method. The effect of Li amount on the phase, micro-structure, piezoelectric properties and dielectric properties of samples was analyzed by X-ray diffraction, scanning electron microscopy and precision impedance analysis, respectively. The results show that all the samples possess a pure perovskite structure. When the amount of Li increases, the phase structure of the samples at room temperature changes from orthorhombic to tetragonal symmetry, the Curie temperature TC moves to a higher temperature, but orthorhombic-tetragonal phase transition temperature To-t moves to a lower temperature, even moves to the temperature below room temperature as x≥0.04. In addition, a polymorphic phase transition from orthorhombic to tetragonal symmetry occurs in the composition range of 0.04≤x≤0.06. The ceramic samples in the composition when x = 0.04 have optimal electrical properties, i. e., piezoelectric constant (d33) of 240 pC/N, planar electromechanical coefficient (kp) of 44.7%, relative dielectric constant (ε33T/ε0) of 2090, and dielectric loss (tanδ) of 2.7%.
引用
收藏
页码:1 / 5
页数:4
相关论文
共 20 条
  • [1] Abraham T., Applications, markets expand for piezoelectric ceramics, Am Ceram Bull, 79, 9, pp. 45-47, (2000)
  • [2] Guo R., Cross L.E., Park S.E., Et al., Origin of the high piezoelectric response in PbZr<sub>1-x</sub>Ti<sub>x</sub>O<sub>3</sub>, Phys Rev Lett, 84, 23, pp. 5423-5426, (2000)
  • [3] Shen Z.Y., Li Y.M., Wang Z.M., Et al., J Synth Cryst, S1, pp. 309-315, (2012)
  • [4] Zheng L.M., Wang J.F., Zang G.Z., Et al., Lead-bismuth-free piezoceramics (Na<sub>0.5</sub>K<sub>0.44</sub>Li<sub>0.06</sub>) Nb<sub>0.95</sub>Sb<sub>0.05</sub>O<sub>3</sub>- Na<sub>5.6</sub>Cu<sub>1.2</sub>Sb<sub>10</sub>O<sub>29</sub>, Chin Sci Bullet, 52, 4, pp. 566-569, (2007)
  • [5] Shen Z.Y., Li J.F., J Chin Ceram Soc, 38, 3, pp. 510-520, (2010)
  • [6] Wang R.P., Xie R.J., Hanada K., Et al., Phase diagram and enhanced piezoelectricity in the strontium titanate doped potassium-sodium niobate solid solution, Phys Status Solidi A, 202, 6, (2005)
  • [7] Sun X.Y., Chen J., Yu R.B., Et al., BiScO<sub>3</sub> doped (Na<sub>0.5</sub>K<sub>0.5</sub>)NbO<sub>3</sub> lead-free piezoelectric ceramics, J Am Ceram Soc, 92, 1, pp. 130-132, (2009)
  • [8] Liu D.J., Du H.L., Kang F.S., Et al., J Chin Ceram Soc, 35, 9, pp. 1141-1145, (2007)
  • [9] Gao D.J., Kwok K.W., Lin D.M., Et al., Microstructure, electrical properties of CeO<sub>2</sub>-doped (K<sub>0.5</sub>Na<sub>0.5</sub>)NbO<sub>3</sub> lead-free piezoelectric ceramics, J Mater Sci, 44, pp. 2466-2470, (2009)
  • [10] Lin D.M., Kwok K.W., Chan H.L.W., Piezoelectric and ferroelectric properties of K<sub>x</sub>Na<sub>1-x</sub>NbO<sub>3</sub> lead-free ceramics with MnO<sub>2</sub> and CuO doping, J Alloy Compd, 461, 1-2, pp. 273-278, (2008)