Instance importance based SVM for solving imbalanced data classification

被引:0
作者
Yang, Yang [1 ]
Li, Shan-Ping [1 ]
机构
[1] College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
来源
Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence | 2009年 / 22卷 / 06期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:913 / 918
相关论文
共 50 条
[31]   Instance selection improves geometric mean accuracy: a study on imbalanced data classification [J].
Kuncheva, Ludmila I. ;
Arnaiz-Gonzalez, Alvar ;
Diez-Pastor, Jose-Francisco ;
Gunn, Iain A. D. .
PROGRESS IN ARTIFICIAL INTELLIGENCE, 2019, 8 (02) :215-228
[32]   Instance selection improves geometric mean accuracy: a study on imbalanced data classification [J].
Ludmila I. Kuncheva ;
Álvar Arnaiz-González ;
José-Francisco Díez-Pastor ;
Iain A. D. Gunn .
Progress in Artificial Intelligence, 2019, 8 :215-228
[33]   Imbalanced Data Classification Based on Clustering [J].
Li, Hu ;
Zou, Peng ;
Han, Weihong ;
Xia, Rongze .
COMPUTER-AIDED DESIGN, MANUFACTURING, MODELING AND SIMULATION III, 2014, 443 :741-745
[34]   Research On Classification Method Of High-Dimensional Class-Imbalanced Data Sets Based On SVM [J].
Zhang, Chunkai ;
Guo, Jianwei ;
Lu, Junru .
2017 IEEE SECOND INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC), 2017, :60-67
[35]   Imbalanced data SVM classification method based on cluster boundary sampling and DT-KNN pruning [J].
Peng, Li ;
Xiao-Yang, Yu ;
Ting-Ting, Bi ;
Jiu-Ling, Huang .
International Journal of Signal Processing, Image Processing and Pattern Recognition, 2014, 7 (02) :61-68
[36]   Improving SVM classification on imbalanced time series data sets with ghost points [J].
Suzan Köknar-Tezel ;
Longin Jan Latecki .
Knowledge and Information Systems, 2011, 28 :1-23
[37]   Improving SVM classification on imbalanced time series data sets with ghost points [J].
Koeknar-Tezel, Suzan ;
Latecki, Longin Jan .
KNOWLEDGE AND INFORMATION SYSTEMS, 2011, 28 (01) :1-23
[38]   Solving the imbalanced data classification problem with the particle swarm optimization based support vector machine [J].
Xu, Zhenyuan ;
Watada, Juilzo ;
Wu, Mingnan ;
Ibrahim, Zuwarie ;
Khalid, Marzuki .
IEEJ Transactions on Electronics, Information and Systems, 2014, 134 (06) :788-795
[39]   A multi-manifold learning based instance weighting and under-sampling for imbalanced data classification problems [J].
Feizi, Tayyebe ;
Moattar, Mohammad Hossein ;
Tabatabaee, Hamid .
JOURNAL OF BIG DATA, 2023, 10 (01)
[40]   A Quasi-linear SVM Combined with Assembled SMOTE for Imbalanced Data Classification [J].
Zhou, Bo ;
Yang, Cheng ;
Guo, Haixiang ;
Hu, Jinglu .
2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,