A clustering method considering continuity of data based on self-organizing map

被引:0
作者
Imamura, Hiroki [1 ,2 ]
Fujimura, Makoto [1 ,2 ]
Kuroda, Hideo [1 ,2 ]
机构
[1] Dept. of Computer and Information Science, Nagasaki University, Nagasaki City, 852-8521, 1-14, Bunkyou-mach
[2] Graduate School of Science and Technorogy, Nagasaki University, Nagasaki City, 852-8521, 1-14, Bunkyou-mach
来源
Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers | 2006年 / 60卷 / 08期
关键词
D O I
10.3169/itej.60.1312
中图分类号
学科分类号
摘要
For accurate clustering when clusters are close to each other, we developed a method considering the continuity of data based on a self-organizing map.
引用
收藏
页码:1312 / 1316
页数:4
相关论文
共 7 条
[1]  
Cover B.T., Hart P., Nearest neighbor classification, IEEE Trans. on Information Theory, IT-13, 1, pp. 21-27, (1967)
[2]  
Fukunaga K., Introduction to Statistical Pattern Recognition, (1990)
[3]  
Duda R.O., Hart P.E., Stocrk D.G., Pattern Clasification - Second Edition, (2002)
[4]  
Mao J., Jain A.K., A Self-organizing Network for Hyper-ellipsoidal Clustering (HEC), IEEE Trans. on Neural Networks, TNN-7, 1, pp. 16-29, (1996)
[5]  
Cannon R.L., Dave J.V., Bezdek J.C., Efficient implementation of the fuzzy c-means clustering algorithms, IEEE Trans. on PAMI, 8, 2, pp. 248-255, (1986)
[6]  
Hammah R.E., Curran J.H., Validity measures for the fuzzy cluster analysis of orientations, IEEE Trans. on PAMI, 22, 12, pp. 1467-1472, (2000)
[7]  
Keller A., Klawonn F., Fuzzy clustering with weighting of data variables, Int. Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 8, 6, pp. 735-746, (2000)