A comparison of transformer and CNN-based object detection models for surface defects on Li-Ion Battery Electrodes

被引:2
作者
Mattern, Alexander [1 ]
Gerdes, Henrik
Grunert, Dennis [1 ]
Schmitt, Robert H. [1 ,2 ]
机构
[1] Fraunhofer Inst Prod Technol IPT, Dept Prod Qual & Metrol, Steinbachstr 17, D-52074 Aachen, Germany
[2] Rhein Westfal TH Aachen, Chair Prod Metrol & Qual Management, Lab Machine Tools & Prod Engn WZL, Steinbachstr 17, D-52074 Aachen, Germany
关键词
Electrode coating; Surface defects; Object detection; Transformer; Convolutional neural network;
D O I
10.1016/j.est.2024.114378
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Deep learning-based defect detection approaches offer great potential for end-to-end surface defect detection. After the prevalent Convolutional Neural Network (CNN) models were state-of-the-art for almost a decade, transformer-based models recently surpassed the performance of CNN models on standard benchmark datasets. However, standard benchmarks such as the Common Objects in Context (COCO) dataset are not comparable to industrial use cases. To evaluate the applicability of transformer models in an industrial context, this paper applies a transformer-based object detection model for surface defect detection on Lithium-Ion Battery Electrodes LIBE and compares the results to a CNN-based object detection model. Asa result, the transformer- based model outperforms the CNN model but is inferior in detection speed. In addition, the paper demonstrates the importance of a well-annotated dataset and shows the sensitivity of annotations for the model performance. Finally, this paper presents practical steps for an industrial application regarding backbone choice, inference speed, and metrics.
引用
收藏
页数:11
相关论文
共 56 条
[1]  
a Nelson P., 2012, Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles Chemical Sciences and Engineering Division
[2]  
Algan G., 2020, Label noise types and their effects on deep learning
[3]  
[Anonymous], 1. S. Ricard-Blum, F. Ruggiero, M. van der Rest, in Collagen, J. Brinckmann, H. Notbohm, P. K. Muller, Eds. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005), vol. 247 of Topics in Current Chemistry, pp. 35-84.
[4]   Image-based defect detection in lithium-ion battery electrode using convolutional neural networks [J].
Badmos, Olatomiwa ;
Kopp, Andreas ;
Bernthaler, Timo ;
Schneider, Gerhard .
JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (04) :885-897
[5]   End-to-end deep learning framework for printed circuit board manufacturing defect classification [J].
Bhattacharya, Abhiroop ;
Cloutier, Sylvain G. .
SCIENTIFIC REPORTS, 2022, 12 (01)
[6]  
Bochkovskiy A, 2020, Arxiv, DOI [arXiv:2004.10934, DOI 10.48550/ARXIV.2004.10934]
[7]  
Carion N, 2020, Arxiv, DOI arXiv:2005.12872
[8]   Autonomous Visual Detection of Defects from Battery Electrode Manufacturing [J].
Choudhary, Nirmal ;
Clever, Henning ;
Ludwigs, Robert ;
Rath, Michael ;
Gannouni, Aymen ;
Schmetz, Arno ;
Huelsmann, Tom ;
Sawodny, Julia ;
Fischer, Leon ;
Kampker, Achim ;
Fleischer, Juergen ;
Stein, Helge S. .
ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (12)
[9]   Standards of Care for the Health of Transgender and Gender Diverse People, Version 8 [J].
Coleman, E. ;
Radix, A. E. ;
Bouman, W. P. ;
Brown, G. R. ;
de Vries, A. L. C. ;
Deutsch, M. B. ;
Ettner, R. ;
Fraser, L. ;
Goodman, M. ;
Green, J. ;
Hancock, A. B. ;
Johnson, T. W. ;
Karasic, D. H. ;
Knudson, G. A. ;
Leibowitz, S. F. ;
Meyer-Bahlburg, H. F. L. ;
Monstrey, S. J. ;
Motmans, J. ;
Nahata, L. ;
Nieder, T. O. ;
Reisner, S. L. ;
Richards, C. ;
Schechter, L. S. ;
Tangpricha, V ;
TisheInnan, A. C. ;
Van Trotsenburg, M. A. A. ;
Winter, S. ;
Ducheny, K. ;
Adams, N. J. ;
Adrian, T. M. ;
Allen, L. R. ;
Azul, D. ;
Bagga, H. ;
Basar, K. ;
Bathory, D. S. ;
Belinky, J. J. ;
Berli, J. U. ;
Bluebond-Langner, R. O. ;
Bouman, M-B ;
Bowers, M. L. ;
Brassard, P. J. ;
Byrne, J. ;
Capitan, L. ;
Cargill, C. J. ;
Carswell, J. M. ;
Chang, S. C. ;
Chelvakumar, G. ;
Corneil, T. ;
Dalke, K. B. ;
De Cuypere, G. .
INTERNATIONAL JOURNAL OF TRANSGENDER HEALTH, 2022, 23 :S1-S258
[10]   Defect detection and classification on semiconductor wafers using two-stage geometric transformation-based data augmentation and SqueezeNet lightweight convolutional neural network [J].
de la Rosa, Francisco Lopez ;
Gomez-Sirvent, Jose L. ;
Morales, Rafael ;
Sanchez-Reolid, Roberto ;
Fernandez-Caballero, Antonio .
COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 183