Prediction of stellar physical parameters from spectra using neural network

被引:0
|
作者
School of Information Engineering, Shandong University at Weihai, Weihai 264209, China [1 ]
不详 [2 ]
机构
来源
J. Inf. Comput. Sci. | 2008年 / 4卷 / 1551-1556期
关键词
Signal to noise ratio - Learning systems;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Physical parametrization of stellar spectra: the neural network approach
    BailerJones, CAL
    Irwin, M
    Gilmore, G
    vonHippel, T
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1997, 292 (01) : 157 - 166
  • [2] Prediction of Physical Parameters of Pumpkin Seeds Using Neural Network
    Demir, Bunyamin
    Eski, Ikbal
    Kus, Zeynel A.
    Ercisli, Sezai
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2017, 45 (01) : 22 - 27
  • [3] Neural network classification of stellar spectra
    BailerJones, CAL
    OBSERVATORY, 1997, 117 (1139): : 250 - 250
  • [4] Neural network classification of stellar spectra
    BailerJones, C
    Irwin, M
    vonHippel, T
    STATISTICAL CHALLENGES IN MODERN ASTRONOMY II, 1997, : 445 - 446
  • [5] Neural network classification of stellar spectra
    BailerJones, CAL
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 1997, 109 (738) : 932 - 932
  • [6] Stellar atmospheric parameters from Gaia BP/RP spectra using uncertain neural networks
    Fallows, Connor P.
    Sanders, Jason L.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 531 (01) : 2126 - 2147
  • [7] Neural network tools for stellar light prediction
    Cholewo, TJ
    Zurada, JM
    1997 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOL 3, 1997, : 415 - 422
  • [9] On the estimation of stellar parameters with uncertainty prediction from Generative Artificial Neural Networks: application to Gaia RVS simulated spectra
    Dafonte, C.
    Fustes, D.
    Manteiga, M.
    Garabato, D.
    Alvarez, M. A.
    Ulla, A.
    Allende Prieto, C.
    ASTRONOMY & ASTROPHYSICS, 2016, 594
  • [10] Prediction of hyperkalemia in dogs from electrocardiographic parameters using an artificial neural network
    Porter, RS
    Kaplan, J
    Zhao, N
    De Garavilla, L
    Eynon, CA
    Wenger, FG
    Dalsey, WC
    ACADEMIC EMERGENCY MEDICINE, 2001, 8 (06) : 599 - 603