共 19 条
- [1] Hill M.R., Panontin T.L., Micromechanical modeling of fracture initiation in 7050 aluminum, Eng. Fract. Mech., 69, pp. 2163-2186, (2002)
- [2] Prime M.B., Hill M.R., Residual stress, stress relief, and inhomogeneity in aluminum plate, Scripta Materialia, 46, 1, pp. 77-82, (2002)
- [3] Panontin T.L., Hill M.R., The effect of residual stresses on brittle and ductile fracture initiation predicted by micromechanical models, Int. J. Fract., 82, pp. 317-333, (1996)
- [4] Bucci R.J., Effect of residual stress on fatigue crack growth rate measurement, ASTM Special Technical Publication, pp. 28-47, (1981)
- [5] Residual Stress Effects in Fatigue, (1982)
- [6] Bucci R.J., James M.A., Sklyut H., Heinimann M.B., Ball D.L., Donald J.K., Advances in Testing and Analytical Simulation Methodologies to Support Design and Structural Integrity Assessment of Large Monolithic Parts, (2006)
- [7] Bush R.W., Bucci R.J., Magnusen P.E., Kuhlman G.W., Fatigue crack growth rate measurements in aluminum alloy forgings: Effects of residual stress and grain flow, Fracture Mechanics, pp. 568-589
- [8] Fabbro R., Peyre P., Berthe L., Scherpereel X., Physics and applications of laser-shock processing, J. Laser Appl., 10, pp. 265-279, (1998)
- [9] Montross C.S., Wei T., Ye L., Clark G., Mai Y.-W., Laser shock processing and its effects on microstructure and properties of metal alloys: A review, International Journal of Fatigue, 24, 10, pp. 1021-1036, (2002)
- [10] Pistochini T., Fatigue Life Optimization in Laser Peened 7050-T7451 and 300M Steel, (2003)