CuO/reduced graphene oxide nanocomposite for high performance non-enzymatic, cost effective glucose sensor

被引:0
作者
Sahu V. [1 ]
Grover S. [1 ]
Sharma M. [2 ]
Pandey A. [3 ]
Singh G. [1 ]
Sharma R.K. [1 ]
机构
[1] Department of Chemistry, University of Delhi, Delhi
[2] Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi
[3] Department of Physics, Mewar University, Chittorgarh, 312901, Rajasthan
关键词
CuO nanoparticles; Glucose sensor; Non-enzymatic; Reduced graphene oxide;
D O I
10.1166/sl.2016.3727
中图分类号
学科分类号
摘要
In this article, we report the synthesis of reduced graphene oxide supported cupric oxide (CuO/RGO) nanocomposite for enzyme free amperometric detection of glucose. Structural characterization of CuO/RGO nanocomposite using X-ray diffraction, and electron microscopy revealed ∼5 nm CuO particles immobilized and well dispersed over graphene sheet. The finely dispersed CuO nanoparticles over RGO support exhibited synergism and resulted in enhanced electrocatalytic oxidation of glucose. Electrochemical characterization of CuO/RGO nanocomposite as a glucose sensor is via cyclic voltammetry and chronoamperometry suggest high sensitivity towards glucose. The response time in glucose detection (with the addition of 0.1 mM glucose) is found to ∼1 s. Typically the CuO/RGO nanocomposite exhibited a long linear range of glucose from 0.1 mM to 1.0 mM of glucose detection with very high sensitivity ∼1500 μA/mMcm2. The proposed CuO/RGO nanocomposite electrode demonstrates high selectivity towards glucose when tested with ascorbic acid and uric acid as other interfering species. Copyright © 2016 American Scientific Publishers All rights reserved.
引用
收藏
页码:1117 / 1122
页数:5
相关论文
共 24 条
[1]  
Zhuang Z., Su X., Yuan H., Sun Q., Xiao D., Choi M.M.F., Choi, Analyst, 133, (2008)
[2]  
Jiang L.-C., Zhang W.-D., Biosen. Bioelectron., 25, (2010)
[3]  
Parente A.H., Marques E.T.A., Azevedo W.M., Diniz F.B., Melo E.H.M., Filho J.L.L., Appl. Biochem. Biotechnol., 37, (1992)
[4]  
Mutyala S., Mathiyarasu J., Appl. Biochem. Biotechnol., 172, (2013)
[5]  
Wang B., Yan S., Lin Z., Shi Y., Xu X., Fu L., Jiang J., J. Nanosci. Nanotechnol., 16, (2016)
[6]  
Wang X., Dong L., Li J., Shan G., Chen Y., Liu Y., J. Nanosci. Nanotechnol., 16, (2016)
[7]  
Wang J., Zhao D., Xu C., J. Nanosci. Nanotechnol., 16, (2016)
[8]  
Qin H., Hwang T., Ahn C., Kim J.A., Jin Y., Cho Y., Shin C., Kim T., J. Nanosci. Nanotechnol., 16, (2016)
[9]  
Ye Y., Xie H., Shao X., Wei Y., Liu Y., Zhao W., Xia X., J. Nanosci. Nanotechnol., 16, (2016)
[10]  
Xu Q., Zhao Y., Xu J.Z., Zhu J.-J., Sens. Actuator B, 114, (2006)