Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La

被引:0
作者
Li D. [1 ]
Xu C. [1 ]
Li X. [1 ]
Li S. [1 ]
Zhong H. [1 ]
机构
[1] State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an
来源
Jinshu Xuebao/Acta Metallurgica Sinica | 2023年 / 59卷 / 02期
基金
中国国家自然科学基金;
关键词
Al-Ni coating; CoSb[!sub]3[!/sub; electrical conductivity; thermal conductivity; thermoelectric material;
D O I
10.11900/0412.1961.2021.00215
中图分类号
学科分类号
摘要
During the use of fossil fuels, about two-thirds of the energy that is discharged into the environment in the form of waste heat are barely utilized and cause considerable environmental pollution and intense CO2 emission. Thermoelectric materials directly convert heat energy to electricity, thus, improving the utilization efficiency of fossil energy and reducing environmental pollution. Skutterudite CoSb3 has been widely studied as one of the materials for thermoelectric applications in the middle-temperature region. CoSb3-based skutterudites are narrow bandgap semiconductors with a high-electrical conductivity and Seebeck coefficient. Meanwhile, thermoelectric performance of bulk CoSb3 has been considerably improved via doping and design of nano structures. Herein, P-type CoSb3 was synthesized via melt-annealing-spark plasma sintering process. The effect of Ce-doping content on microstructure and thermoelectric properties of CoSb3 and the effect of La doping on decoupled thermoelectric performance were studied. Compared with Ce0.8Fe3CoSb12, the Seebeck coefficient of La0.1Ce0.8Fe3CoSb12 increased with temperature, electrical resistivity decreased from 25 μΩ·m to 15 μΩ·m at 300 K, and power factor simultaneously increased from 480 μW/(m·K2) to 642 μW/(m·K2) at 673 K. The La0.1Ce0.8Fe3CoSb12 thermal conductivity decreased with La or Ce doping to ~1 W/(m·K), and the corresponding thermoelectric figure of merit reached 0.45 at 723 K in the temperature range from 300 K to 723 K. Al-Ni coating was deposited on the sintered bulk skutterudite via magnetron sputtering method. It was demonstrated that the coating did not degrade the thermoelectric performance, while the coating elements were uniformly distributed across the sintered bulk La0.1Ce0.8Fe3CoSb12. The welding behavior of P-type La0.1Ce0.8Fe3CoSb12 was studied using a Ag40Cu60 solder and a Mo50Cu50 electrode sheet. The interface of this thermoelectric material was prone to cracking and pore formation, while the elements at the interface have not demonstrated remarkable diffusion. This indicates an efficiency of the interface bonding, which may be used in the fabrication technologies of thermoelectric devices. © 2023 Chinese Academy of Sciences. All rights reserved.
引用
收藏
页码:237 / 247
页数:10
相关论文
共 29 条
[1]  
Suarez F, Parekh D P, Ladd C, Et al., Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics, Appl. Energy, 202, (2017)
[2]  
Siddique A R M, Rabari R, Mahmud S, Et al., Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique, Energy, 115, (2016)
[3]  
Kuroki T, Kabeya K, Makino K, Et al., Thermoelectric generation using waste heat in steel works, J. Electron. Mater, 43, (2014)
[4]  
Sun H Y, Li S M, Feng S K, Et al., Microstructure and phase selection in directional solidification of Co-Sb alloy, Acta Metall. Sin, 49, (2013)
[5]  
Yang B, Li S M, Li X, Et al., Ultralow thermal conductivity and enhanced thermoelectric properties of SnTe based alloys prepared by melt spinning technique, J. Alloys Compd, 837, (2020)
[6]  
Zheng Z H, Li F, Luo J T, Et al., Thermoelectric properties and micro-structure characteristics of nano-sized CoSb<sub>3</sub> thin films prefabricating by co-sputtering, J. Alloys Compd, 732, (2018)
[7]  
Tang Y L, Chen S W, Snyder G J., Temperature dependent solubility of Yb in Yb-CoSb<sub>3</sub> skutterudite and its effect on preparation, optimization and lifetime of thermoelectrics, J. Materiomics, 1, (2015)
[8]  
Li X H, Zhang Q, Kang Y L, Et al., High pressure synthesized Ca-filled CoSb<sub>3</sub> skutterudites with enhanced thermoelectric properties, J. Alloys Compd, 677, (2016)
[9]  
Tang Y L, Gibbs Z M, Agapito L A, Et al., Convergence of multivalley bands as the electronic origin of high thermoelectric performance in CoSb<sub>3</sub> skutterudites, Nat. Mater, 14, (2015)
[10]  
Zhou Z X, Li J L, Fan Y C, Et al., Uniform dispersion of SiC in Yb-filled skutterudite nanocomposites with high thermoelectric and mechanical performance, Scr. Mater, 162, (2019)