Electrical Properties of Dual-Gate, Ultrashort Monolayer WS2 Transistors

被引:0
作者
Zhan, Li [1 ]
Tang, Jiachen [1 ]
Li, Shuaixing [1 ]
Li, Shuo [1 ]
Shi, Yi [1 ]
Li, Songlin [1 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Two dimensional semiconductors; monolayer WS2; short-channel FETs; field-effect transistors; Ohmic contact; 2-DIMENSIONAL MATERIALS;
D O I
10.1109/LED.2024.3466904
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report on the observation of record high current density in ultrashort dual-gate (DG) monolayer chemical vapor deposition WS2 field-effect transistors (FETs). The DG FETs were defined by means of a seed layer for depositing the top-gate high-kappa dielectric. By using semi-metallic Sb as contacts, we achieved a low contact resistance of 550 Omega . mu m. A statistical study was conducted for 150 FETs with scaling channel length from 1 mu m down to 15 nm. A record high on-state current of 630 mu A/mu m was demonstrated at room temperature (680 mu A/mu m at 8 K) with a 1 V bias. This work unveils the tremendous potential of monolayer WS2 for ultimate downscaling solutions in future nanoelectronics.
引用
收藏
页码:2411 / 2414
页数:4
相关论文
共 24 条
  • [1] Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A., Electric field effect in atomically thin carbon films, Science, 306, 5696, pp. 666-669, (2004)
  • [2] Akinwande D., Huyghebaert C., Wang C.-H., Serna M.I., Goossens S., Li L.-J., Wong H.-S.-P., Koppens F.H.L., Graphene and two-dimensional materials for silicon technology, Nature, 573, 7775, pp. 507-518, (2019)
  • [3] Su S.-K., Chuu C.-P., Li M.-Y., Cheng C.-C., Wong H.-S.-P., Li L.-J., Layered semiconducting 2D materials for future transistor applications, Small Struct., 2, 5, (2021)
  • [4] Liu Y., Duan X., Shin H.-J., Park S., Huang Y., Duan X., Promises and prospects of two-dimensional transistors, Nature, 591, 7848, pp. 43-53, (2021)
  • [5] Zhou J., Lin J., Huang X., Zhou Y., Chen Y., Xia J., Wang H., Xie Y., Yu H., Lei J., Wu D., Liu F., Fu Q., Zeng Q., Hsu C.-H., Yang C., Lu L., Yu T., Shen Z., Lin H., Yakobson B.I., Liu Q., Suenaga K., Liu G., Liu Z., A library of atomically thin metal chalcogenides, Nature, 556, 7701, pp. 355-359, (2018)
  • [6] Das S., Sebastian A., Pop E., McClellan C.J., Franklin A.D., Grasser T., Knobloch T., Illarionov Y., Penumatcha A.V., Appenzeller J., Chen Z., Zhu W., Asselberghs I., Li L.-J., Avci U.E., Bhat N., Anthopoulos T.D., Singh R., Transistors based on two-dimensional materials for future integrated circuits, Nature Electron., 4, 11, pp. 786-799, (2021)
  • [7] Li S.-L., Tsukagoshi K., Orgiu E., Samori P., Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors, Chem. Soc. Rev., 45, 1, pp. 118-151, (2016)
  • [8] Jiang J., Xu L., Du L., Li L., Zhang G., Qiu C., Peng L.-M., Yttrium-doping-induced metallization of molybdenum disulfide for ohmic contacts in two-dimensional transistors, Nature Electron., 7, 7, pp. 545-556, (2024)
  • [9] Jiang J., Xu L., Qiu C., Peng L.-M., Ballistic two-dimensional InSe transistors, Nature, 616, 7957, pp. 470-475, (2023)
  • [10] Jin Z., Li X., Mullen J.T., Kim K.W., Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides, Phys. Rev. B, Condens. Matter, 90, 4, (2014)