Arbitrary noise generator based on solid-state spin systems

被引:0
作者
Zhang, Yifan [1 ,2 ,3 ]
Fu, Yue [1 ,2 ,4 ]
Zhang, Bo [1 ,2 ,3 ,5 ]
机构
[1] Beijing Inst Technol, Ctr Quantum Technol Res, Sch Phys, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Phys, Key Lab Adv Optoelect Quantum Architecture & Measu, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Ctr Interdisciplinary Sci Opt Quantum & NEMS Integ, Sch Phys, Beijing 100081, Peoples R China
[4] Beijing Inst Technol, Sch Integrated Circuits & Elect, MIIT Key Lab Low Dimens Quantum Struct & Devices, Beijing 100081, Peoples R China
[5] Beijing Inst Technol, MIIT Key Lab Complex Field Intelligent Explorat, Beijing 100081, Peoples R China
关键词
Quantum computers - Quantum electronics - Quantum noise - Quantum optics - Spin dynamics - Spin waves;
D O I
10.1103/PhysRevApplied.22.064007
中图分类号
O59 [应用物理学];
学科分类号
摘要
A controlled noise environment provides a unique platform for the investigation of various quantum technologies. Here, we demonstrate a technique to engineer arbitrary unitary baths in quantum systems with solid-state spin systems. A wide variety of classical noise models, including the generation of dephasing noise and amplitude-damping noise was realized through precise modulation of microwave signals. By measuring the power spectral density of the noise with the aid of single nitrogen-vacancy (N-V) color centers in diamond, we confirm that the generated noise closely matches the theoretical expectations. This technique serves as a powerful toolkit for validating quantum control protocols, simulating decoherence processes in other quantum systems, and generating baths essential for studying quantum thermodynamics.
引用
收藏
页数:10
相关论文
共 48 条
[1]   Measuring the Spectrum of Colored Noise by Dynamical Decoupling [J].
Alvarez, Gonzalo A. ;
Suter, Dieter .
PHYSICAL REVIEW LETTERS, 2011, 107 (23)
[2]   Sensitivity optimization for NV-diamond magnetometry [J].
Barry, John F. ;
Schloss, Jennifer M. ;
Bauch, Erik ;
Turner, Matthew J. ;
Hart, Connor A. ;
Pham, Linh M. ;
Walsworth, Ronald L. .
REVIEWS OF MODERN PHYSICS, 2020, 92 (01)
[3]  
Bylander J, 2011, NAT PHYS, V7, P565, DOI [10.1038/nphys1994, 10.1038/NPHYS1994]
[4]   Quantum refrigerator driven by nonclassical light [J].
Cao, Hui-Jing ;
Li, Fu ;
Li, Sheng-Wen .
PHYSICAL REVIEW RESEARCH, 2022, 4 (04)
[5]   EFFECTS OF DIFFUSION ON FREE PRECESSION IN NUCLEAR MAGNETIC RESONANCE EXPERIMENTS [J].
CARR, HY ;
PURCELL, EM .
PHYSICAL REVIEW, 1954, 94 (03) :630-638
[6]   How to enhance dephasing time in superconducting qubits [J].
Cywinski, Lukasz ;
Lutchyn, Roman M. ;
Nave, Cody P. ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2008, 77 (17)
[7]   Quantum simulations and experiments on Rabi oscillations of spin qubits: Intrinsic vs extrinsic damping [J].
De Raedt, Hans ;
Barbara, Bernard ;
Miyashita, Seiji ;
Michielsen, Kristel ;
Bertaina, Sylvain ;
Gambarelli, Serge .
PHYSICAL REVIEW B, 2012, 85 (01)
[8]   Stochastic model of noise for a quantum thermal transistor [J].
Ekanayake, Uthpala N. ;
Gunapala, Sarath D. ;
Premaratne, Malin .
PHYSICAL REVIEW B, 2023, 108 (23)
[9]   Evolution of quantum spin sensing: From bench-scale ODMR to compact integrations [J].
Esmaeili, Shahriar ;
Schmalenberg, Paul ;
Wu, Songtao ;
Zhou, Yuqing ;
Rodrigues, Sean ;
Hussain, Naveed ;
Kimura, Taishi ;
Tadokoro, Yukihiro ;
Higashi, Shougo ;
Banerjee, Debasish ;
Dede, Ercan M. .
APL MATERIALS, 2024, 12 (04)
[10]   Application of optimal band-limited control protocols to quantum noise sensing [J].
Frey, V. M. ;
Mavadia, S. ;
Norris, L. M. ;
de Ferranti, W. ;
Lucarelli, D. ;
Viola, L. ;
Biercuk, M. J. .
NATURE COMMUNICATIONS, 2017, 8