Full D-Band Transmit-Receive Module for Phased Array Systems in 130-nm SiGe BiCMOS

被引:30
作者
Karakuzulu A. [1 ]
Eissa M.H. [1 ]
Kissinger D. [2 ]
Malignaggi A. [1 ]
机构
[1] Circuit Design Department, IHP Microelectronics, Frankfurt
[2] Institute of Electronic Devices and Circuits, Ulm University, Ulm
来源
IEEE Solid-State Circuits Letters | 2021年 / 4卷
基金
欧盟地平线“2020”;
关键词
5G; 6G; broadband; D-band; integrated circuits (IC); millimeter-wave (mm-wave); silicon-germanium (SiGe) BiCMOS;
D O I
10.1109/LSSC.2021.3054512
中图分类号
学科分类号
摘要
This letter presents a D-band (110 to 170 GHz) transmit-receive module in 0.13- μm silicon-germanium (SiGe) BiCMOS for phased-array applications. The module includes single-pole double throw (SPDT) switches, a low noise amplifier (LNA), a power amplifier (PA), and two variable gain amplifiers (VGAs). A broadband quarter-wave SPDT is designed with power handling capacity of 17 dBm and a state-of-the-art insertion loss of 2 dB at 140 GHz. The three-stage cascode LNA and PA and the two-stage phase-compensated VGA cover the entire D-band. In the receive mode, the module has a measured peak gain of 28.3 dB with a 3-dB bandwidth (BW) of 110-170 GHz, along with a minimum noise figure (NF) of 9 dB (at 120 GHz) and an IP1dB of -21 dBm. In the transmit mode, the peak gain is 22.4 dB within a 3-dB BW of 113-170 GHz, while the OP1dB is 7 dBm and the P sat9.5 dBm at 140 GHz. © 2018 IEEE.
引用
收藏
页码:40 / 43
页数:3
相关论文
共 15 条
[1]  
Dore J.-B., Et al., Technology roadmap for beyond 5G wireless connectivity in D-band, Proc. 2nd 6G Wireless Summit (6G SUMMIT), pp. 1-5, (2020)
[2]  
Radio Frequency Channel/block Arrangements for Fixed Service Systems Operating in the Bands 130-134 GHz, 141-148.5 GHz, 151.5-164 GHz and 167-174.8 GHz, (2018)
[3]  
Lee S., Et al., An 80Gb/s 300GHz-band single-chip CMOS transceiver, IEEE J. Solid-State Circuits, 54, 12, pp. 3577-3588, (2019)
[4]  
Rodriguez-Vazquez P., Grzyb J., Heinemann B., Pfeiffer U.R., A 16-QAM 100-Gb/s 1-M wireless link with an EVM of 17% at 230 GHz in an SiGe technology, IEEE Microw. Wireless Compon. Lett., 29, 4, pp. 297-299, (2019)
[5]  
Eissa M.H., Maletic N., Grass E., Kraemer R., Kissinger D., Malignaggi A., 100 Gbps 0.8-m wireless link based on fully integrated 240 GHz IQ transmitter and receiver, Proc. IEEE MTT-S Int. Microw. Symp. (IMS), pp. 627-630, (2020)
[6]  
Hamada H., Et al., 300-GHz 120-Gb/s wireless transceiver with highoutput-power and high-gain power amplifier based on 80-nm InP-HEMT technology, Proc. IEEE BiCMOS Compound Semicond. Integr. Circuits Technol. Symp. (BCICTS), pp. 1-4, (2019)
[7]  
Tokgoz K., Et al., A 120Gb/s 16QAM CMOS millimeter-wave wireless transceiver, Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), pp. 168-169, (2018)
[8]  
Karakuzulu A., Malignaggi A., Kissinger D., Low insertion loss D-band SPDT switches using reverse and forward saturated SiGe HBTs, Proc. IEEE Radio Wireless Symp. (RWS), pp. 1-3, (2019)
[9]  
Karakuzulu A., Eissa M.H., Kissinger D., Malignaggi A., A broadband 110-170-GHz stagger-tuned power amplifier with 13.5-dBm Psat in 130-nm SiGe, IEEE Microw. Wireless Compon. Lett., 31, 1, pp. 56-59, (2021)
[10]  
Karakuzulu A., Eissa M.H., Kissinger D., Malignaggi A., Broadband 110-170 GHz true time delay circuit in a 130-nm SiGe BiCMOS technology, Proc. IEEE MTT-S Int. Microw. Symp. (IMS), pp. 775-778, (2020)