Efficient nonlinear solvers for nodal high-order finite elements in 3D

被引:0
|
作者
Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie , ETH Zürich, Zürich, Switzerland [1 ]
机构
来源
J Sci Comput | / 1-3卷 / 48-63期
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Finite element method
引用
收藏
相关论文
共 50 条
  • [41] Comparison of High-order Finite Volume and Discontinuous Galerkin Methods on 3D Unstructured Grids
    Antoniadis, A. F.
    Iqbal, K. H.
    Shapiro, E.
    Asproulis, N.
    Drikakis, D.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [42] Hypergeometric Summation Algorithms for High-order Finite Elements
    A. Bećirović
    P. Paule
    V. Pillwein
    A. Riese
    C. Schneider
    J. Schöberl
    Computing, 2006, 78 : 235 - 249
  • [43] Efficient vectorised kernels for unstructured high-order finite element fluid solvers on GPU architectures in two dimensions
    Eichstadt, Jan
    Peiro, Joaquim
    Moxey, David
    COMPUTER PHYSICS COMMUNICATIONS, 2023, 284
  • [45] Propagation of 3D nonlinear waves over an elliptical mound with a High-Order Spectral method
    Gouin, M.
    Ducrozet, G.
    Ferrant, P.
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2017, 63 : 9 - 24
  • [46] An improved coupling of 3D state-based peridynamics with high-order 1D finite elements to reduce spurious effects at interfaces
    Scabbia, F.
    Enea, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (17) : 3687 - 3708
  • [47] A High-Order Approximate Solution for the Nonlinear 3D Volterra Integral Equations with Uniform Accuracy
    Wang, Zi-Qiang
    Long, Ming-Dan
    Cao, Jun-Ying
    AXIOMS, 2022, 11 (09)
  • [48] LOW-ORDER PRECONDITIONING OF HIGH-ORDER TRIANGULAR FINITE ELEMENTS
    Chalmers, Noel
    Warburton, T.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06): : A4040 - A4059
  • [49] Enhanced nodal gradient finite elements with new numerical integration schemes for 2D and 3D geometrically nonlinear analysis
    Du Dinh Nguyen
    Minh Ngoc Nguyen
    Nguyen Dinh Duc
    Rungamornrat, Jaroon
    Tinh Quoc Bui
    APPLIED MATHEMATICAL MODELLING, 2021, 93 (93) : 326 - 359
  • [50] An Efficient and Robust Weak Galerkin Scheme for Solving the 2D/3D H(curl;Ω)-Elliptic Interface Problems With High-Order Elements
    Mohapatra, Achyuta Ranjan Dutta
    Kumar, Raman
    Deka, Bhupen
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2025, 41 (01)