Chemical and chemoenzymatic synthesis of glycosyl-amino acids and glycopeptides related to Trypanosoma cruzi mucins

被引:47
作者
Campo, Vanessa Leiria [1 ,2 ]
Carvalho, Ivone [2 ]
Allman, Sarah [3 ]
Davis, Benjamin G. [3 ]
Field, Robert A. [1 ,4 ]
机构
[1] School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich
[2] Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo
[3] Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, Mansfield Road
[4] Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, Colney Lane
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
D O I
10.1039/b707772f
中图分类号
学科分类号
摘要
This study describes the synthesis of the α- and β-linked N-acetyllactosamine (Galp-β-1,4-GlcNAc; LacNAc) glycosides of threonine (LacNAc-Thr). LacNAc-α-Thr was prepared by direct chemical coupling of a 2-azido-2-deoxy-lactose disaccharide donor to a suitable partially protected threonine unit. In contrast, stepwise chemical generation of β-linked N-acetylglucosamine followed by enzymatic galactosylation to give LacNAc-β-Thr proved effective, whereas use of a 2-azido-2-deoxy-lactose donor in acetonitrile failed to give the desired β-linked disaccharyl glycoside. This study illustrates that it is possible to overcome the inherent stereoselection for 1,2-trans chemical glycosylation with a GlcNAc donor, and that the well-established preference of bovine β-1,4-galactosyltransferase for β-linked acceptor substrates can also be overcome. Using this knowledge, short glycopeptide fragments based on T. cruzi mucin sequences, Thr-Thr-[LacNAcThr]-Thr-Thr-Gly, were synthesised. All LacNAc-based compounds outlined were shown to serve as acceptor substrates for sialylation by T. cruzi trans-sialidase. © The Royal Society of Chemistry.
引用
收藏
页码:2645 / 2657
页数:12
相关论文
共 49 条
[1]  
Renslo A.R., McKerrow J.H., Nat. Chem. Biol., 2, pp. 701-710, (2006)
[2]  
Linares G.E.G., Ravaschino E.L., Rodriguez J.B., Curr. Med. Chem., 13, pp. 335-360, (2006)
[3]  
Paulino M., Iribarne F., Dubin M., Aguilera-Morales S., Tapia O., Stoppani A.O.M., Mini-Rev. Med. Chem., 5, pp. 499-519, (2005)
[4]  
Dardonville C., Expert Opin. Ther. Pat., 15, pp. 1241-1257, (2005)
[5]  
Lockman J.W., Hamilton A.D., Curr. Med. Chem., 12, pp. 945-959, (2005)
[6]  
El-Sayed N.M., Myler P.J., Bartholomeu D.C., Nilsson D., Aggarwal G., Tran A.N., Ghedin E., Worthey E.A., Delcher A.L., Blandin G., Westenberger S.J., Caler E., Cerqueira G.C., Branche C., Haas B., Anupama A., Arner E., Aslund L., Attipoe P., Bontempi E., Bringaud F., Burton P., Cadag E., Campbell D.A., Carrington M., Crabtree J., Darban H., Da Silveira J.F., De Jong P., Edwards K., Englund P.T., Feldblyum G.T., Ferella M., Frasch A.C., Horn K.D., Hou L.H., Huang Y.T., Kindlund E., Ktingbeil M.
[7]  
Spiro R.G., Glycobiology, 12, (2002)
[8]  
Acosta-Serrano A., Almeida I.C., Freitas L.H., Yoshida N., Schenkman S., Mol. Biochem. Parasitol., 114, pp. 143-150, (2001)
[9]  
Buscaglia C.A., Campo V.A., Frasch A.C.C., Di Noia J.M., Nat. Rev. Microbiol., 4, pp. 229-236, (2006)
[10]  
Agrellos O.A., Jones C., Todeschini A.R., Previato J.O., Previato L.M., Mol. Biochem. Parasitol., 126, pp. 93-96, (2003)