Multi-voxel pattern analysis of fMRI based on deep learning methods

被引:0
|
作者
机构
[1] Center of Medical Information Science, Kochi University
[2] School of Information, Kochi University of Technology
来源
Hatakeyama, Yutaka (hatake@kochi-u.ac.jp) | 1600年 / Springer Verlag卷 / 271期
关键词
Deep Brief Network; Deep learning; fMRI; MVPA;
D O I
10.1007/978-3-319-05527-5_4
中图分类号
学科分类号
摘要
A decoding process for fMRI data is constructed based on Multi-Voxel Pattern Analysis (MVPA) using deep learning method for online training process. The constructed process with Deep Brief Network (DBN) extracts the feature for classification on each ROI of input fMRI data. The decoding experiment results for hand motion show that the decoding accuracy based on DBN is comparable to that with the conventional process with batch training and that the divided feature extraction in the first layer decreases computational time without loss of accuracy. The constructed process should be necessary for interactive decoding experiments for each subject. © Springer International Publishing Switzerland 2014.
引用
收藏
页码:29 / 38
页数:9
相关论文
共 50 条
  • [31] Effect of trial-to-trial variability on optimal event-related fMRI design: Implications for Beta-series correlation and multi-voxel pattern analysis
    Abdulrahman, Hunar
    Henson, Richard N.
    NEUROIMAGE, 2016, 125 : 756 - 766
  • [32] What do differences between multi-voxel and univariate analysis mean? How subject-, voxel-, and trial-level variance impact fMRI analysis
    Davis, Tyler
    LaRocque, Karen F.
    Mumford, Jeanette A.
    Norman, Kenneth A.
    Wagner, Anthony D.
    Poldrack, Russell A.
    NEUROIMAGE, 2014, 97 : 271 - 283
  • [33] Predicting the severity of internet gaming disorder with resting-state brain features: A multi-voxel pattern analysis
    Ye, Shuer
    Wang, Min
    Yang, Qun
    Dong, Haohao
    Dong, Guang-Heng
    JOURNAL OF AFFECTIVE DISORDERS, 2022, 318 : 113 - 122
  • [34] Functional magnetic resonance imaging investigation of overlapping lateral occipitotemporal activations using multi-voxel pattern analysis
    Downing, Paul E.
    Wiggett, Alison J.
    Peelen, Marius V.
    JOURNAL OF NEUROSCIENCE, 2007, 27 (01) : 226 - 233
  • [35] Penalized Likelihood Phenotyping: Unifying Voxelwise Analyses and Multi-Voxel Pattern Analyses in Neuroimaging
    Adluru, Nagesh
    Hanlon, Bret M.
    Lutz, Antoine
    Lainhart, Janet E.
    Alexander, Andrew L.
    Davidson, Richard J.
    NEUROINFORMATICS, 2013, 11 (02) : 227 - 247
  • [36] Brain activity across the development of automatic categorization: A comparison of categorization tasks using multi-voxel pattern analysis
    Soto, Fabian A.
    Waldschmidt, Jennifer G.
    Helie, Sebastien
    Ashby, F. Gregory
    NEUROIMAGE, 2013, 71 : 284 - 297
  • [37] Representation of response alternatives in human presupplementary motor area: Multi-voxel pattern analysis in a go/no-go task
    Fedota, John R.
    Hardee, Jillian E.
    Perez-Edgar, Koraly
    Thompson, James C.
    NEUROPSYCHOLOGIA, 2014, 56 : 110 - 118
  • [38] VOXEL-LEVEL FMRI ANALYSIS BY REPRESENTATION LEARNING AND DEEP CLUSTERING FOR ALZHEIMER'S DISEASE
    Ding, Zhiyuan
    Lu, Wenjing
    Wang, Ling
    Zeng, Xiangzhu
    Zhao, Tong
    Tian, Xu
    Wang, Zeng
    Liu, Yan
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [39] Brain connectomics improve prediction of 1-year decreased quality of life in breast cancer: A multi-voxel pattern analysis
    Liang, Mu Zi
    Tang, Ying
    Chen, Peng
    Tang, Xiao Na
    Knobf, M. Tish
    Hu, Guang Yun
    Sun, Zhe
    Liu, Mei Ling
    Yu, Yuan Liang
    Ye, Zeng Jie
    EUROPEAN JOURNAL OF ONCOLOGY NURSING, 2024, 68
  • [40] The role of the dorsolateral prefrontal cortex in bilingual language switching and non-linguistic task-switching: Evidence from multi-voxel pattern analysis
    Vaughn, Kelly A.
    Tamber-Rosenau, Benjamin J.
    Hernandez, Arturo E.
    BILINGUALISM-LANGUAGE AND COGNITION, 2024, 27 (04) : 690 - 699