Multi-voxel pattern analysis of fMRI based on deep learning methods

被引:0
|
作者
机构
[1] Center of Medical Information Science, Kochi University
[2] School of Information, Kochi University of Technology
来源
Hatakeyama, Yutaka (hatake@kochi-u.ac.jp) | 1600年 / Springer Verlag卷 / 271期
关键词
Deep Brief Network; Deep learning; fMRI; MVPA;
D O I
10.1007/978-3-319-05527-5_4
中图分类号
学科分类号
摘要
A decoding process for fMRI data is constructed based on Multi-Voxel Pattern Analysis (MVPA) using deep learning method for online training process. The constructed process with Deep Brief Network (DBN) extracts the feature for classification on each ROI of input fMRI data. The decoding experiment results for hand motion show that the decoding accuracy based on DBN is comparable to that with the conventional process with batch training and that the divided feature extraction in the first layer decreases computational time without loss of accuracy. The constructed process should be necessary for interactive decoding experiments for each subject. © Springer International Publishing Switzerland 2014.
引用
收藏
页码:29 / 38
页数:9
相关论文
共 50 条
  • [21] Age differences in the neural representation of working memory revealed by multi-voxel pattern analysis
    Carp, Joshua
    Gmeindl, Leon
    Reuter-Lorenz, Patricia A.
    FRONTIERS IN HUMAN NEUROSCIENCE, 2010, 4
  • [22] High-resolution multi-voxel pattern analysis of category selectivity in the medial temporal lobes
    Diana, Rachel A.
    Yonelinas, Andrew P.
    Ranganath, Charan
    HIPPOCAMPUS, 2008, 18 (06) : 536 - 541
  • [23] Mechanisms supporting superior source memory for familiar items: A multi-voxel pattern analysis study
    Poppenk, Jordan
    Norman, Kenneth A.
    NEUROPSYCHOLOGIA, 2012, 50 (13) : 3015 - 3026
  • [24] Temporal embedding and spatiotemporal feature selection boost multi-voxel pattern analysis decoding accuracy
    Choupan, Jeiran
    Douglas, Pamela K.
    Gal, Yaniv
    Cohen, Mark S.
    Reutens, David C.
    Yang, Zhengyi
    JOURNAL OF NEUROSCIENCE METHODS, 2020, 345
  • [25] Potential for false positive results from multi-voxel pattern analysis on functional imaging data
    Zhang, Zuo
    Jiang, Youhao
    Sun, Yaoru
    Zhang, Hong
    TECHNOLOGY AND HEALTH CARE, 2017, 25 : S287 - S294
  • [26] Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): Random permutations and cluster size control
    Stelzer, Johannes
    Chen, Yi
    Turner, Robert
    NEUROIMAGE, 2013, 65 : 69 - 82
  • [27] Multi-voxel pattern analysis of selective representation of visual working memory in ventral temporal and occipital regions
    Han, Xufeng
    Berg, Alexander C.
    Oh, Hwamee
    Samaras, Dimitris
    Leung, Hoi-Chung
    NEUROIMAGE, 2013, 73 : 8 - 15
  • [28] Representation of semantic typicality in brain activation in healthy adults and individuals with aphasia: A multi-voxel pattern analysis
    Li, Ran
    Perrachione, Tyler K.
    Tourville, Jason A.
    Kiran, Swathi
    NEUROPSYCHOLOGIA, 2021, 158
  • [29] First Steps in Using Multi-Voxel Pattern Analysis to Disentangle Neural Processes Underlying Generalization of Spider Fear
    Visser, Renee M.
    Haver, Pia
    Zwitser, Robert J.
    Scholte, H. Steven
    Kindt, Merel
    FRONTIERS IN HUMAN NEUROSCIENCE, 2016, 10
  • [30] Multi-voxel pattern classification differentiates personally experienced event memories from secondhand event knowledge
    Chow, Tiffany E.
    Westphal, Andrew J.
    Rissman, Jesse
    NEUROIMAGE, 2018, 176 : 110 - 123