Multi-voxel pattern analysis of fMRI based on deep learning methods

被引:0
|
作者
机构
[1] Center of Medical Information Science, Kochi University
[2] School of Information, Kochi University of Technology
来源
Hatakeyama, Yutaka (hatake@kochi-u.ac.jp) | 1600年 / Springer Verlag卷 / 271期
关键词
Deep Brief Network; Deep learning; fMRI; MVPA;
D O I
10.1007/978-3-319-05527-5_4
中图分类号
学科分类号
摘要
A decoding process for fMRI data is constructed based on Multi-Voxel Pattern Analysis (MVPA) using deep learning method for online training process. The constructed process with Deep Brief Network (DBN) extracts the feature for classification on each ROI of input fMRI data. The decoding experiment results for hand motion show that the decoding accuracy based on DBN is comparable to that with the conventional process with batch training and that the divided feature extraction in the first layer decreases computational time without loss of accuracy. The constructed process should be necessary for interactive decoding experiments for each subject. © Springer International Publishing Switzerland 2014.
引用
收藏
页码:29 / 38
页数:9
相关论文
共 50 条
  • [1] Multi-voxel pattern analysis of fMRI data predicts clinical symptom severity
    Coutanche, Marc N.
    Thompson-Schill, Sharon L.
    Schultz, Robert T.
    NEUROIMAGE, 2011, 57 (01) : 113 - 123
  • [2] Searchlight-based multi-voxel pattern analysis of fMRI by cross-validated MANOVA
    Allefeld, Carsten
    Haynes, John-Dylan
    NEUROIMAGE, 2014, 89 : 345 - 357
  • [3] Multi-voxel pattern analysis in human hippocampal subfields
    Bonnici, Heidi M.
    Chadwick, Martin J.
    Kumaran, Dharshan
    Hassabis, Demis
    Weiskopf, Nikolaus
    Maguire, Eleanor A.
    FRONTIERS IN HUMAN NEUROSCIENCE, 2012, 6
  • [4] The advantage of brief fMRI acquisition runs for multi-voxel pattern detection across runs
    Coutanche, Marc N.
    Thompson-Schill, Sharon L.
    NEUROIMAGE, 2012, 61 (04) : 1113 - 1119
  • [5] MULTI-VOXEL PATTERN ANALYSIS OF fMRI DATA DURING SELFAND OTHER-REFERENTIAL PROCESSING
    Knyazev, G. G.
    Savostyanov, A. N.
    Rudych, P. D.
    Bocharov, A. V.
    ZHURNAL VYSSHEI NERVNOI DEYATELNOSTI IMENI I P PAVLOVA, 2023, 73 (02) : 242 - 255
  • [6] Multi-voxel pattern analysis for developmental cognitive neuroscientists
    Moreira, Joao F. Guassi
    Silvers, Jennifer A.
    DEVELOPMENTAL COGNITIVE NEUROSCIENCE, 2025, 73
  • [7] Reliability of dissimilarity measures for multi-voxel pattern analysis
    Walther, Alexander
    Nili, Hamed
    Ejaz, Naveed
    Alink, Arjen
    Kriegeskorte, Nikolaus
    Diedrichsen, Jorn
    NEUROIMAGE, 2016, 137 : 188 - 200
  • [8] Age differences in neural distinctiveness revealed by multi-voxel pattern analysis
    Carp, Joshua
    Park, Joonkoo
    Polk, Thad A.
    Park, Denise C.
    NEUROIMAGE, 2011, 56 (02) : 736 - 743
  • [9] Assessing hippocampal functional reserve in temporal lobe epilepsy: A multi-voxel pattern analysis of fMRI data
    Bonnici, Heidi M.
    Sidhu, Meneka
    Chadwick, Martin J.
    Duncan, John S.
    Maguire, Eleanor A.
    EPILEPSY RESEARCH, 2013, 105 (1-2) : 140 - 149
  • [10] INVESTIGATING THE BRAIN BASIS OF FACIAL EXPRESSION PERCEPTION USING MULTI-VOXEL PATTERN ANALYSIS OF FMRI DATA
    Wegrzyn, Martin
    Riehle, Marcel
    Labudda, Kirsten
    Woermann, Friedrich
    Kissler, Johanna
    PSYCHOPHYSIOLOGY, 2013, 50 : S83 - S84