Nonlocal advantages of quantum imaginarity

被引:4
作者
Wei, Zhi-Wei [1 ]
Fei, Shao-Ming [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
ENTANGLEMENT; STATE; SPACE; SEPARABILITY;
D O I
10.1103/PhysRevA.110.052202
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum imaginarity and quantum nonlocality capture the essence of quantumness of a physical system from different aspects. We establish a connection between the imaginarity and quantum nonlocality in any two-qubit states. Based on the imaginarity l 1-norm and relative entropy, we derive complementary relations among the quantum imaginarities with respect to any set of mutually unbiased bases for arbitrary qubit states. Based on these complementary relations, we introduce the nonlocal advantage of quantum imaginarity (NAQI). We show that any two-qubit state with NAQI is quantum steerable, but not vice versa. In addition, we investigate the exclusion property of NAQI in three-qubit pure states.
引用
收藏
页数:9
相关论文
共 97 条
  • [1] Generalized Schmidt decomposition and classification of three-quantum-bit states
    Acín, A
    Andrianov, A
    Costa, L
    Jané, E
    Latorre, JI
    Tarrach, R
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (07) : 1560 - 1563
  • [2] Classification of mixed three-qubit states -: art. no. 040401
    Acín, A
    Bruss, D
    Lewenstein, M
    Sanpera, A
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (04) : 40401 - 1
  • [3] Three-qubit pure-state canonical forms
    Acín, A
    Andrianov, A
    Jané, E
    Tarrach, R
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (35): : 6725 - 6739
  • [4] Real-vector-space quantum theory with a universal quantum bit
    Aleksandrova, Antoniya
    Borish, Victoria
    Wootters, William K.
    [J]. PHYSICAL REVIEW A, 2013, 87 (05):
  • [6] Armstrong S, 2015, NAT PHYS, V11, P167, DOI [10.1038/NPHYS3202, 10.1038/nphys3202]
  • [7] Division Algebras and Quantum Theory
    Baez, John C.
    [J]. FOUNDATIONS OF PHYSICS, 2012, 42 (07) : 819 - 855
  • [8] A new proof for the existence of mutually unbiased bases
    Bandyopadhyay, S
    Boykin, PO
    Roychowdhury, V
    Vatan, F
    [J]. ALGORITHMICA, 2002, 34 (04) : 512 - 528
  • [9] Composites and Categories of Euclidean Jordan Algebras
    Barnum, Howard
    Graydon, Matthew A.
    Wilce, Alexander
    [J]. QUANTUM, 2020, 4
  • [10] Understanding quantum entanglement: Qubits, rebits and the quaternionic approach
    Batle, J
    Plastino, AR
    Casas, M
    Plastino, A
    [J]. OPTICS AND SPECTROSCOPY, 2003, 94 (05) : 700 - 705