Blockchain-Based Federated Learning: A Survey and New Perspectives

被引:1
作者
Ning, Weiguang [1 ]
Zhu, Yingjuan [2 ]
Song, Caixia [3 ]
Li, Hongxia [3 ]
Zhu, Lihui [3 ]
Xie, Jinbao [3 ]
Chen, Tianyu [3 ]
Xu, Tong [3 ]
Xu, Xi [3 ]
Gao, Jiwei [3 ]
机构
[1] Qingdao Smart Village Dev Serv Ctr, Qingdao 266199, Peoples R China
[2] Qingdao Agr Univ, Coll Agron, Qingdao 266109, Peoples R China
[3] Qingdao Agr Univ, Coll Sci & Informat, Qingdao 266109, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 20期
关键词
blockchain; federated learning; blockchain-based federated learning; distributed machine learning; SECURE; CHALLENGES; MECHANISM; FRAMEWORK; INTERNET; INTELLIGENCE; NETWORKS; SYSTEM; THINGS; AI;
D O I
10.3390/app14209459
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Federated learning, as a novel distributed machine learning mode, enables the training of machine learning models on multiple devices while ensuring data privacy. However, the existence of single-point-of-failure bottlenecks, malicious threats, scalability of federated learning implementation, and lack of incentive mechanisms have seriously hindered the development of federated learning technology. In recent years, as a distributed ledger, blockchain has the characteristics of decentralization, tamper-proof, transparency, security, etc., which can solve the issues encountered in the above-mentioned federated learning. Particularly, the integration of federated learning and blockchain leads to a new paradigm, called blockchain-based federated learning (BFL), which has been successfully applied in many application scenarios. This paper aims to provide a comprehensive review of recent efforts on blockchain-based federated learning. More concretely, we propose and design a taxonomy of blockchain-based federated learning models, along with providing a comprehensive summary of the state of the art. Various applications of federated learning based on blockchain are introduced. Finally, we expand on current trends and provide new perspectives pertaining to this new and exciting development in the field.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Blockchain-Based Distributed Federated Learning in Smart Grid
    Antal, Marcel
    Mihailescu, Vlad
    Cioara, Tudor
    Anghel, Ionut
    MATHEMATICS, 2022, 10 (23)
  • [22] HBFL: A hierarchical blockchain-based federated learning framework for collaborative IoT intrusion detection
    Sarhan, Mohanad
    Lo, Wai Weng
    Layeghy, Siamak
    Portmann, Marius
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103
  • [23] Blockchain-based federated learning methodologies in smart environments
    Dong Li
    Zai Luo
    Bo Cao
    Cluster Computing, 2022, 25 : 2585 - 2599
  • [24] Blockchain-Based Federated Learning for Data Privacy and Security
    Murugan, G.
    Divyashree, D.
    Ravisankar, P.
    Vasudevan, M.
    Karthikeyan, T.
    Singh, Devesh Pratap
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [25] Secure and Scalable Blockchain-Based Federated Learning for Cryptocurrency Fraud Detection: A Systematic Review
    Ahmed, Ahmed Abdelmoamen
    Alabi, Oluwayemisi O.
    IEEE ACCESS, 2024, 12 : 102219 - 102241
  • [26] ScaleSFL: A Sharding Solution for Blockchain-Based Federated Learning
    Madill, Evan
    Nguyen, Ben
    Leung, Carson K.
    Rouhani, Sara
    BSCI'22: PROCEEDINGS OF THE FOURTH ACM INTERNATIONAL SYMPOSIUM ON BLOCKCHAIN AND SECURE CRITICAL INFRASTRUCTURE, 2022, : 95 - 106
  • [27] The Design of Reputation System for Blockchain-based Federated Learning
    Chen, Xinyan
    Wang, Taotao
    Zhang, Shengli
    2021 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BLOCKCHAIN TECHNOLOGY (AIBT 2021), 2021, : 114 - 120
  • [28] Federated learning with blockchain-based model aggregation and incentives
    Cherukuri R.V.
    Lavanya Devi G.
    Ramesh N.
    International Journal of Computers and Applications, 2024, 46 (06) : 407 - 417
  • [29] BAFL: A Blockchain-Based Asynchronous Federated Learning Framework
    Feng, Lei
    Zhao, Yiqi
    Guo, Shaoyong
    Qiu, Xuesong
    Li, Wenjing
    Yu, Peng
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (05) : 1092 - 1103
  • [30] Enhancing trust and privacy in distributed networks: a comprehensive survey on blockchain-based federated learning
    Liu, Ji
    Chen, Chunlu
    Li, Yu
    Sun, Lin
    Song, Yulun
    Zhou, Jingbo
    Jing, Bo
    Dou, Dejing
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (08) : 4377 - 4403