Hydrogen Production Performance of a Self-Heating Methanol Steam Reforming Microreactor

被引:0
|
作者
Liu, Shuai [1 ,2 ]
Du, Pengzhu [1 ]
Jia, Hekun [1 ]
Hua, Lun [2 ]
Dong, Fei [1 ]
Hao, Liutao [1 ]
机构
[1] Jiangsu Univ, Sch Automot & Traff Engn, Xuefu Rd 301, Zhenjiang 212013, Peoples R China
[2] Tsinghua Univ, Suzhou Automot Res Inst, Inst Transportat Energy & Environm Protect, Suzhou 215200, Peoples R China
关键词
Microchannel reactor; Self-heating; Porous media; Hydrogen production performance; CATALYST SUPPORT; REACTORS;
D O I
10.1061/JLEED9.EYENG-5664
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The study of microchannel methanol steam reforming plays an important role in improving the efficiency of hydrogen production and promoting the development of clean energy. This thesis numerically simulates a circle-triangle microchannel-a reactor catalyst with a porous media structure-that works with internal methanol combustion for heat supply and external methanol-reforming for hydrogen production. The heat transfer performance inside the microchannel and the chemical reaction kinetic rate of methanol were analyzed; the effects of different conditions such as inlet velocity, water-to-alcohol ratio, and reaction temperature on the hydrogen production performance of the microchannel reactor were analyzed, and the reaction law and transport characteristics inside this microchannel were revealed. The results show that the overall temperature distribution of the microchannel reactor is relatively uniform; the reforming reaction mainly occurs at the outer side of the porous catalytic layer, the internal mass transfer resistance is large, and the reforming reaction needs to optimize the pore structure of the catalytic layer to reduce the mass transfer limitation; the velocity variation in the reforming channel is large, the hydrogen yield increases with the temperature increase, and the water-alcohol ratio and inlet velocity need to be controlled to achieve the best performance.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Study on the impact of methanol steam reforming reactor channel structure on hydrogen production performance
    Liu, Shuai
    Du, Pengzhu
    Jia, Hekun
    Zhang, Qiushi
    Hao, Liutao
    RENEWABLE ENERGY, 2024, 228
  • [42] Development of self-heating microreactor for catalytic reactions
    Kusakabe, K
    Miyagawa, D
    Gu, Y
    Maeda, H
    Morooka, S
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2001, 34 (03) : 441 - 443
  • [43] Comprehensive performance study on reflux solar methanol steam reforming reactor for hydrogen production
    Zhang, Tong
    Tang, Xin-Yuan
    Yang, Wei-Wei
    Ma, Xu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (03) : 879 - 893
  • [45] A novel thermally autonomous methanol steam reforming microreactor using SiC honeycomb ceramic as catalyst support for hydrogen production
    Wang, Yancheng
    Liu, Haiyu
    Mei, Deqing
    Wu, Qiong
    Zhou, Haonan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (51) : 25878 - 25892
  • [46] Hydrogen production from steam reforming of dimethyl ether in metal foam microreactor
    Hai, Hang
    Yan, Changfeng
    Hu, Rongrong
    Luo, Weimin
    Guo, Changqing
    Li, Wenbo
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2015, 36 (04): : 1004 - 1009
  • [47] KINETICS OF HYDROGEN PRODUCTION BY PARTIAL OXIDATION AND STEAM REFORMING OF METHANOL
    朱吉钦
    王福安
    化工学报, 2003, (05) : 719 - 720
  • [48] Recent Advances in Methanol Steam Reforming Catalysts for Hydrogen Production
    Zhang, Mengyuan
    Liu, Diru
    Wang, Yiying
    Zhao, Lin
    Xu, Guangyan
    Yu, Yunbo
    He, Hong
    CATALYSTS, 2025, 15 (01)
  • [49] PARAMETRIC STUDY OF HYDROGEN PRODUCTION FROM ETHANOL STEAM REFORMING IN A MEMBRANE MICROREACTOR
    de-Souza, M.
    Zanin, G. M.
    Moraes, F. F.
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2013, 30 (02) : 355 - 367
  • [50] Review on Hydrogen Production Reactor and System of Methanol Steam Reforming
    Li, Jiming
    Yang, Yang
    Zhu, Xun
    Ye, Dingding
    Chen, Rong
    Liao, Qiang
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2024, 44 (18): : 7276 - 7292