ConCave-Convex procedure for support vector machines with Huber loss for text classification

被引:0
作者
Borah, Parashjyoti [1 ]
Gupta, Deepak [2 ]
Hazarika, Barenya Bikash [3 ]
机构
[1] Indian Inst Informat Technol Guwahati Bongora, Dept Comp Sci & Engn, Gauhati 781015, Assam, India
[2] Motilal Nehru Natl Inst Technol Allahabad, Dept Comp Sci & Engn, Prayagraj 211004, Uttar Pradesh, India
[3] Assam Town Univ, Fac Comp Technol, Sankar Madhab Path,Gandhinagar, Gauhati 781026, Assam, India
关键词
Support vector machine; Hinge loss; ConCave-Convex procedure; Ramp loss function; Huber loss functions; REGRESSION; CLASSIFIERS; ALGORITHM;
D O I
10.1016/j.compeleceng.2024.109925
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The classical support vector machine (SVM) adopts the linear Hinge loss whereas the least squares SVM (LS-SVM) employs the quadratically growing least squares loss function. The robust Ramp loss function is employed in Ramp loss SVM (RSVM) that truncates the Hinge loss function and becomes flat a specified point afterwards, thus, increases robustness to outliers. Recently proposed SVM with pinball loss (pin-SVM) utilizes pinball loss function that maximizes the margin between the class hyperplanes based on quantile distance. Huber loss function is the generalization of linear Hinge loss and quadratic loss. Huber loss solves sensitivity issues of least squares loss to noise and outlier. In this work, we employ the robust Huber loss function for SVM classification for improved generalization performance. The cost function of the proposed approach consists of one convex and one non-convex part, which might sometimes provide local optimum solution instead of a global optimum. We suggest a ConCave-Convex Procedure (CCCP) to resolve this issue. Additionally, the proximal cost is scaled for each class sample based on their class size to reduce the effect of the class imbalance problem. Thus, it can be claimed that the proposed approach incorporates class imbalance learning as well. Extensive experimental analysis establishes efficacy of the proposed method. Furthermore, a sequential minimal optimization (SMO) procedure for high dimensional HSVM is proposed and its performance is tested on two text classification datasets.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Robust Classification via Support Vector Machines
    Asimit, Alexandru, V
    Kyriakou, Ioannis
    Santoni, Simone
    Scognamiglio, Salvatore
    Zhu, Rui
    RISKS, 2022, 10 (08)
  • [22] Support vector machines and the Bayes rule in classification
    Lin, Y
    DATA MINING AND KNOWLEDGE DISCOVERY, 2002, 6 (03) : 259 - 275
  • [23] Enzyme family classification by support vector machines
    Cai, CZ
    Han, LY
    Ji, ZL
    Chen, YZ
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2004, 55 (01) : 66 - 76
  • [24] Additive support vector machines for pattern classification
    Doumpos, Michael
    Zopounidis, Constantin
    Golfinopoulou, Vassiliki
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2007, 37 (03): : 540 - 550
  • [25] COMPLEX SUPPORT VECTOR MACHINES FOR QUATERNARY CLASSIFICATION
    Bouboulis, P.
    Theodoridou, E.
    Theodoridis, S.
    2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2013,
  • [26] Support Vector Machines and the Bayes Rule in Classification
    Yi Lin
    Data Mining and Knowledge Discovery, 2002, 6 : 259 - 275
  • [27] Bounded quantile loss for robust support vector machines-based classification and regression
    Zhang, Jiaqi
    Yang, Hu
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 242
  • [28] Target classification via support vector machines
    Karlsen, RE
    Gorsich, DJ
    Gerhart, GR
    OPTICAL ENGINEERING, 2000, 39 (03) : 704 - 711
  • [29] Radar HRRP classification with support vector machines
    Li, Y
    Ren, Y
    Shan, XM
    2001 INTERNATIONAL CONFERENCES ON INFO-TECH AND INFO-NET PROCEEDINGS, CONFERENCE A-G: INFO-TECH & INFO-NET: A KEY TO BETTER LIFE, 2001, : A218 - A222
  • [30] Support vector machines for classification in nonstandard situations
    Lin, Y
    Lee, Y
    Wahba, G
    MACHINE LEARNING, 2002, 46 (1-3) : 191 - 202