Polyp Segmentation via Semantic Enhanced Perceptual Network

被引:0
|
作者
Wang, Tong [1 ]
Qi, Xiaoming [1 ]
Yang, Guanyu [1 ]
机构
[1] Southeast Univ, Key Lab New Generat Artificial Intelligence Techno, Minist Educ, Nanjing 210096, Jiangsu, Peoples R China
关键词
Semantics; Kernel; Feature extraction; Convolution; Shape; Image segmentation; Image color analysis; Polyp segmentation; semantic perception; multi-scale learning; feature fusion;
D O I
10.1109/TCSVT.2024.3432882
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate polyp segmentation is crucial for precise diagnosis and prevention of colorectal cancer. However, precise polyp segmentation still faces challenges, mainly due to the similarity of polyps to their surroundings in terms of color, shape, texture, and other aspects, making it difficult to learn accurate semantics. To address this issue, we propose a novel semantic enhanced perceptual network (SEPNet) for polyp segmentation, which enhances polyp semantics to guide the exploration of polyp features. Specifically, we propose the Polyp Semantic Enhancement (PSE) module, which utilizes a coarse segmentation map as a basis and selects kernels to extract semantic information from corresponding regions, thereby enhancing the discriminability of polyp features highly similar to the background. Furthermore, we design a plug-and-play semantic guidance structure for the PSE, leveraging accurate semantic information to guide scale perception and context fusion, thereby enhancing feature discriminability. Additionally, we propose a Multi-scale Adaptive Perception (MAP) module, which enhances the flexibility of receptive fields by increasing the interaction of information between neighboring receptive field branches and dynamically adjusting the size of the perception domain based on the contribution of each scale branch. Finally, we construct the Contextual Representation Calibration (CRC) module, which calibrates contextual representations by introducing an additional branch network to supplement details. Extensive experiments demonstrate that SEPNet outperforms 15 SOTA methods on five challenging datasets across six standard metrics.
引用
收藏
页码:12594 / 12607
页数:14
相关论文
共 50 条
  • [41] Sea Ice Classification via Deep Neural Network Semantic Segmentation
    Dowden, Benjamin
    De Silva, Oscar
    Huang, Weimin
    Oldford, Dan
    IEEE SENSORS JOURNAL, 2021, 21 (10) : 11879 - 11888
  • [42] Multitask Semantic Boundary Awareness Network for Remote Sensing Image Segmentation
    Li, Aijin
    Jiao, Licheng
    Zhu, Hao
    Li, Lingling
    Liu, Fang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [43] Polyp-DAM: Polyp Segmentation via Depth Anything Model
    Zheng, Zhuoran
    Wu, Chen
    Jin, Yeying
    Jia, Xiuyi
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2925 - 2929
  • [44] A Boundary-Enhanced Semantic Segmentation Model for Buildings
    Wang, Fenglei
    Gao, Xin
    Zhao, Zongze
    Xu, Lida
    Ma, Chao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 5733 - 5748
  • [45] An Efficient Polyp Segmentation Network
    Erol, Tugberk
    Sarikaya, Duygu
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [46] Enhanced U-Net: A Feature Enhancement Network for Polyp Segmentation
    Patel, Krushi
    Bur, Andres M.
    Wang, Guanghui
    2021 18TH CONFERENCE ON ROBOTS AND VISION (CRV 2021), 2021, : 181 - 188
  • [47] MFALNet: A Multiscale Feature Aggregation Lightweight Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Lv, Liang
    Guo, Yiyou
    Bao, Tengfei
    Fu, Chenqin
    Huo, Hong
    Fang, Tao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (12) : 2172 - 2176
  • [48] Automatic Polyp Segmentation Using Modified Recurrent Residual Unet Network
    Song-Toan Tran
    Minh-Hoa Nguyen
    Huu-Phuc Dang
    Thanh-Tan Nguyen
    IEEE ACCESS, 2022, 10 (65951-65961) : 65951 - 65961
  • [49] Multiattention Network for Semantic Segmentation of Fine-Resolution Remote Sensing Images
    Li, Rui
    Zheng, Shunyi
    Zhang, Ce
    Duan, Chenxi
    Su, Jianlin
    Wang, Libo
    Atkinson, Peter M.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [50] Duplex Restricted Network With Guided Upsampling for the Semantic Segmentation of Remotely Sensed Images
    Wang, Xiaoyu
    Liang, Longxue
    Yan, Haowen
    Wu, Xiaosuo
    Lu, Wanzhen
    Cai, Jiali
    IEEE ACCESS, 2021, 9 : 42438 - 42448